
Model-Based Machine Learning

•• ••

• • • •
•

• • • • •
•

••• • • •
• •

• • • • • • •
• • • •
• • • • • •

• , • • • •
•

• , • • •
•

• • •• • •
• • • • • •

• •
• ., •

•• •
• •

• • •

• • �
•

• • • •
• • • •

John Winn
w,th

Christopher M. Bishop, Thomas Diethe, John Guiver and Yordan Zaykov

Contents

How can machine learning solve my problem? 5
0.0.1 What is model-based machine learning? 6
0.0.2 Who is this book for? . 9
0.0.3 How to read this book . 10

1 A Murder Mystery 13
1.1 Incorporating evidence . 19
1.2 A model of a murder . 25

1.2.1 Probabilistic models . 26
1.2.2 Two rules for working with probabilistic models 27
1.2.3 Inference using the joint distribution 28

1.3 Working with larger models . 33
1.3.1 Inference without computing the joint distribution 36

1.4 Extending the model . 40
1.4.1 Incremental inference . 42

2 Assessing People’s Skills 47
2.1 A model is a set of assumptions 50

2.1.1 Questioning our assumptions 55
2.2 Testing out the model . 58

2.2.1 Doing inference by hand 58
2.2.2 Doing inference by passing messages on the graph 61
2.2.3 Using belief propagation to test out the model 66

2.3 Loopiness . 70
2.3.1 Loopy belief propagation 71
2.3.2 Applying loopy belief propagation to our model 74

2.4 Moving to real data . 78
2.4.1 Visualising the data . 79
2.4.2 A factor graph for the whole test 82
2.4.3 Our first results . 83

2.5 Diagnosing the problem . 86
2.5.1 Checking the inference algorithm 86
2.5.2 Working out what is wrong with the model 88

2.6 Learning the guess probabilities 92

1

2 CONTENTS

2.6.1 Representing uncertainty in continuous values 92
2.6.2 Measuring progress . 97
2.6.3 A different way of measuring progress 99
2.6.4 Finishing up . 102

Interlude: the machine learning life cycle 107

3 Meeting Your Match 111
3.1 Modelling the outcome of games 114
3.2 Inferring the players’ skills . 125

3.2.1 A probabilistic model: TrueSkill 127
3.2.2 Inference in the TrueSkill model 129
3.2.3 A problem with using exact inference 136

3.3 A solution: expectation propagation 139
3.3.1 Applying expectation propagation 144
3.3.2 Multiple games . 146

3.4 Extensions to the core model . 152
3.4.1 What if a game can end in a draw? 152
3.4.2 What if we have more than two players in a game? 154
3.4.3 What if the games are played by teams? 157

3.5 Allowing the skills to vary . 160
3.5.1 Reproducing the problem 160
3.5.2 The final model . 164

4 Uncluttering Your Inbox 167
4.1 Collecting and managing email data 169

4.1.1 Learning from confidential data 170
4.2 A model for classification . 173

4.2.1 A one-feature classification model 174
4.3 Modelling multiple features . 182

4.3.1 Features are part of the model 185
4.4 Designing a feature set . 189

4.4.1 Features with many states 189
4.4.2 Numeric features . 191
4.4.3 Features with many, many states 192
4.4.4 An initial feature set . 195

4.5 Evaluating and improving the feature set 197
4.5.1 Parallel and sequential schedules 197
4.5.2 Visualising the learned weights 198
4.5.3 Evaluating reply prediction 200
4.5.4 Understanding the user’s experience 203
4.5.5 Improving the feature set 207

4.6 Learning as emails arrive . 212
4.6.1 Modelling a community of users 213
4.6.2 Solving the cold start problem 217
4.6.3 Final testing and changes 221

CONTENTS 3

5 Making Recommendations 225
5.1 Learning about people and movies 227

5.1.1 Characterizing movies . 227
5.1.2 A model of a trait . 229

5.2 Multiple traits and multiple people 233
5.2.1 Learning from many people at once 237

5.3 Training our recommender . 241
5.3.1 Getting to know our data 241
5.3.2 Training on MovieLens data 242

5.4 Our first recommendations . 247
5.4.1 Evaluating our predictions 248
5.4.2 How many traits should we use? 250

5.5 Modelling star ratings . 252
5.5.1 Results with star ratings 254

5.6 Another cold start problem . 259
5.6.1 Adding features to our model 261
5.6.2 Results with features . 264
5.6.3 Final thoughts . 265

6 Understanding Asthma 267
6.1 A model of allergies . 269

6.1.1 Modelling test results . 269
6.1.2 Modelling tests through time 272
6.1.3 Completing the model . 274
6.1.4 Reviewing our assumptions 276

6.2 Trying out the model . 278
6.2.1 Working with missing data 278
6.2.2 Some initial results . 281

6.3 Comparing alternative models . 286
6.3.1 Comparing the two models using Bayesian model selection 290

6.4 Modelling with gates . 295
6.4.1 Using gates for model selection 297
6.4.2 Expectation propagation in factor graphs with gates . . . 298

6.5 Discovering sensitization classes 306
6.5.1 Testing the model with two classes 308
6.5.2 Exploring more sensitization classes 310

4 CONTENTS

How can machine learning
solve my problem?

This PDF version of the book is for content review only - the
design and figure placement will be updated once the content is
finalised. To see correct figure placement and a closer-to-final

design, see the web version of the book at www.mbmlbook.com.

During the last few years, machine learning has moved to centre stage in the
world of technology. Today, thousands of engineers and researchers are applying
machine learning to an extraordinarily broad range of domains. However, mak-
ing effective use of machine learning in practice can be daunting, especially for
newcomers to the field. When someone is trying to solve a real-world problems
using machine learning, they often encounter challenges:

“I am overwhelmed by the choice of machine learning methods and
techniques. There’s too much to learn!”

“I don’t know which algorithm to use or why one would be better
than another for my problem.”

“My problem doesn’t seem to fit with any standard algorithm.”

Machine learning can seem daunting to newcomers.

In this book we look at ma-
chine learning from a fresh perspec-
tive which we call model-based ma-
chine learning. Model-based ma-
chine learning helps to address all
of these challenges, and makes the
process of creating effective machine
learning solutions much more trans-
parent.

5

http://www.mbmlbook.com

6 INTRODUCTION

0.0.1 What is model-based
machine learning?

Over the last five decades, researchers
have created literally thousands of
machine learning algorithms. Tradi-
tionally an engineer wanting to solve
a problem using machine learning must choose one or more of these algorithms
to try, or otherwise attempt to invent a new one. In practice, their choice of
algorithm may be constrained by those algorithms they happen to be familiar
with, or by the availability of specific software, and may not be the best choice
for their problem.

By contrast the model-based approach seeks to create a bespoke solution
tailored to each new application. Instead of having to transform your problem
to fit some standard algorithm, in model-based machine learning you design the
algorithm precisely to fit your problem.

The core idea at the heart of model-based machine learning is that all the
assumptions about the problem domain are made explicit in the form of a
model. In fact, a model is just made up of this set of assumptions, expressed
in a precise mathematical form. These assumptions include the number and
types of variables in the problem domain, which variables affect each other, and
what the effect of changing one variable is on another variable. For example,
in the next chapter we build a model to help us solve a simple murder mystery.
The assumptions of the model include the list of suspected culprits, the possible
murder weapons, and the tendency for particular weapons to be preferred by
different suspects. This model is then used to create a model-specific algorithm
to solve the specific machine learning problem. Model-based machine learning
can be applied to pretty much any problem, and its general-purpose approach
means you don’t need to learn a huge number of machine learning algorithms
and techniques.

So why do the assumptions of the model play such a key role? Well it turns
out that machine learning cannot generate solutions purely from data alone.
There are always assumptions built into any algorithm, although usually these
assumptions are far from explicit. Different algorithms correspond to different
sets of assumptions and, when the assumptions are implicit, the only way to
decide which algorithm is likely to give the best results is to compare them
empirically. This is time-consuming and inefficient, and it requires software
implementations of all of the algorithms being compared. And if none of the
algorithms tried gives good results, it is even harder to work out how to create
a better algorithm.

Models versus algorithms

Let’s look more closely at the relationship between models and algorithms. We
can think of a standard machine learning algorithm as a monolithic box which
takes in data and produces results. The algorithm must necessarily make as-

7

sumptions since it is these assumptions that distinguish a particular algorithm
from the thousands of others out there. However, in an algorithm those assump-
tions are implicit and opaque.

Now consider the model-based view. The model comprises the set of as-
sumptions we are making about the problem domain. To get from the model
to a set of predictions we need to take the data and compute those variables
whose values we wish to know. This computational process we shall call in-
ference. There are several techniques available for doing inference, as we shall
discuss during the course of this book. The combination of the model and the
inference procedure together define a machine learning algorithm, as illustrated
in Figure 1.

Machine learning algorithm

Model
(application specific)

Inference method
(generic)

A S S U M P T I O N S

Figure 1: In the model-based view of machine learning, an algorithm arises
from a particular combination of a model and an inference method. Here the
coloured shapes within the model represent the assumptions comprising that
specific model. Changes to the assumptions give rise to different machine learn-
ing algorithms, even when the inference method is kept fixed.

Although there are various choices for the inference method, by decoupling
the model from the inference we are able to apply the same inference method
to a wide variety of models. For example, most of the case studies discussed in
this book are solved using just one inference method.

Model-based machine learning can be used to do any standard machine
learning task, such as classification (chapter 4) or clustering (chapter 6), whilst
providing additional insight and control over how these tasks are performed.
Solving these tasks using model-based machine learning provides a way to handle

8 INTRODUCTION

extensions to the task or to improve accuracy, by making changes to the model
– we will look at an example of this in chapter 4. Additionally, the assumptions
you are making about the problem domain are laid out clearly in the model, so it
is easier to work out why one model works better than another, to communicate
to someone else what a model is doing, and to understand what’s happening
when things go wrong. Using models also makes it easier to share other people’s
solutions in order to adapt, extend, or combine them.

An example: predicting skills

Suppose you wish to track the changing skill of a player in an online gaming
service (this is the problem we will explore in detail in chapter 3). A machine
learning textbook might tell you that there is an algorithm called a ‘Kalman
filter’ which can be used for these kinds of problems. Suppose you decide to
try and make use of some Kalman filter software to predict how a player’s skill
evolves over time. First you will have to work out how to convert the skill
prediction task into the form of a standard Kalman filter. Having done that,
if you are lucky, the software might give a sufficiently good solution. However,
the results from using an off-the-shelf algorithm often fail to reach the accuracy
level required by real applications. How will you modify the algorithm, and
the corresponding software, to achieve better results? It seems you will have to
become an expert on the Kalman filter algorithm, and to delve into the software
implementation, in order to make progress.

Contrast this with the model-based approach. You begin by listing the
assumptions which your solution must satisfy. This defines your model. You
then use this model to create the corresponding machine-learning algorithm,
which is a mechanical process that can be automated. If your assumptions
happen to correspond to those which are implicit in the Kalman filter, then your
algorithm will correspond precisely to the Kalman filtering algorithm (and this
will happen even if you have never heard of a Kalman filter). Perhaps, however,
the model for your particular application has somewhat different assumptions.
In this case, you will obtain a variant of the Kalman filter, appropriate to
your application. Whether this variant already exists, or whether it is a novel
algorithm, is irrelevant if your goal is to find the best solution to your problem.
Suppose you try your model-based algorithm, and the results again fall short
of your requirements. Now you have a framework for improving the results by
examining and modifying the assumptions to produce a better model, along
with the corresponding improved algorithm. As a domain expert it is far easier
and more intuitive to understand and change the assumptions than it is to
modify a machine learning algorithm directly. Even if your goal is simply to
understand the Kalman filter, then starting with the model assumptions is by far
the clearest and simplest way to derive the filtering algorithm, and to understand
what Kalman filters are all about.

9

Tools for model-based machine learning

The decomposition of algorithms into a model and a separate inference method
has another powerful consequence. It becomes possible to create a software
framework which will generate the machine learning algorithm automatically,
given only the definition of the model and a choice of inference method. This
allows the applications developer to focus on the creation of the model, which
is domain-specific, and frees them from the need to be an expert on the inner
workings of the inference procedure.

For more than ten years we have been working on such a software framework
at Microsoft Research, called Infer.NET [Minka et al., 2014]. Because a model
consists simply of a set of assumptions it can be expressed in very compact code,
which is relatively easy to understand and modify. The corresponding code for
the algorithm, which is generally much more complex, is then produced auto-
matically. All of the models in this book were created using Infer.NET, and the
corresponding model source code is available online. However, these solutions
could equally be implemented by hand or by using an alternative model-based
framework – they are not specific to Infer.NET. Examples of alternative soft-
ware frameworks that implement the model-based machine learning philosophy
include BUGS [Lunn et al., 2000], Church, [Goodman et al., 2008], and Stan
[Stan Development Team, 2014].

0.0.2 Who is this book for?

This book is rather unusual for a machine learning text book in that we do not
review dozens of different algorithms. Instead we introduce all of the key ideas
through a series of case studies involving real-world applications. Case studies
play a central role because it is only in the context of applications that it makes
sense to discuss modelling assumptions. Each chapter therefore introduces one
case study which is drawn from a real-world application that has been solved
using a model-based approach. The exception is the first chapter which explores
a simple fictional problem involving a murder mystery.

Only a few building blocks are needed to
construct an infinite variety of models.

Each chapter also serves to introduce a
variety of machine learning concepts, not as
abstract ideas, but as concrete techniques
motivated by the needs of the application.
You can think of these concepts as the build-
ing blocks for constructing models. Al-
though you will need to invest some time
to understand these concepts fully, you will
soon discover that a huge variety of models
can be constructed from a relatively small
number of building blocks. By working
through the case studies in this book you
will learn how to use these components, and
will hopefully gain a sufficient appreciation

10 INTRODUCTION

of the power and flexibility of model-based
approach to allow you to solve your machine learning problem.

Inference deep-dive
This book is intended for any technical person who wants to use machine learn-
ing to solve a real-world problem – the focus of the book is on designing models
to solve problems. However, some readers will also want to understand the
mathematical details of how models are turned into inference algorithms. We
have separated these parts of the book, which require more advanced mathe-
matics, into inference deep-dive sections, which will be marked with panels like
this one.

Deep-dive sections are optional – you can read the book without them. If
you are planning on using a software framework like Infer.NET or just want to
focus on modelling, you can skip these sections.

0.0.3 How to read this book

Sit back and relax, and we’ll help you get to grips
with machine learning.

Each case study in this book describes
a journey from problem statement to
solution. You probably do not want
to follow this journey in a single sit-
ting. To help with this, each case
study is split into sections – we rec-
ommend reading a section at a time
and pausing to digest what you have
learned at the end of each section. To
help with this, the machine learning
concepts introduced in a section will
be highlighted like this and will be
reviewed at the end of each section (as
you can see below). We aim to provide
enough details of each concept to al-
low the case studies to be understood,
along with links to external sources,
such as Bishop [2006], where you can get more details if you are interested in a
particular topic.

Now, on to the first case study!

Review of concepts introduced in this section

model-based machine learning An approach to machine learning where
all the assumptions about the problem domain are made explicit in the form of
a model. This model is then used to create a model-specific algorithm to learn
or reason about the domain. The algorithm creation part of this process can be
automated.

11

model A set of assumptions about a problem domain, expressed in a precise
mathematical form, that is used to create a machine learning solution.

Infer.NET A software framework developed at Microsoft Research Cam-
bridge which can do model-based machine learning automatically given a model
definition. Available for download at the Infer.NET website.

http://research.microsoft.com/infernet

12 INTRODUCTION

Chapter 1

A Murder Mystery

As the clock strikes midnight in the Old Tudor Mansion, a raging
storm rattles the shutters and fills the house with the sound of thun-
der. The dead body of Mr Black lies slumped on the floor of the
library, blood still oozing from the fatal wound. Quick to arrive on
the scene is the famous sleuth Dr Bayes, who observes that there were
only two other people in the Mansion at the time of the murder. So
who committed this dastardly crime? Was it the fine upstanding pil-
lar of the establishment Major Grey? Or was it the mysterious and
alluring femme fatale Miss Auburn?

We begin our study of model-based machine
learning by investigating a murder. Although seem-
ingly simple, this murder mystery will introduce
many of the key concepts that we will use through-
out the book.

The goal in tackling this mystery is to work
out the identity of the murderer. Having only
just discovered the body, we are very uncertain
as to whether the murder was committed by Miss
Auburn or Major Grey. Over the course of inves-
tigating the murder, we will use clues discovered
at the crime scene to reduce this uncertainty as to
who committed the murder.

Immediately we face our first challenge, which is
that we have to be able to handle quantities whose
values are uncertain. In fact the need to deal with uncertainty arises throughout
our increasingly data-driven world. In most applications, we will start off in a
state of considerable uncertainty and, as we get more data, become increasingly
confident. In a murder mystery, we start off very uncertain who the murderer
is and then slowly get more and more certain as we uncover more clues. Later
in the book, we will see many more examples where we need to represent un-

13

14 CHAPTER 1. A MURDER MYSTERY

certainty: when two players play each other in Xbox live it is more likely that
the stronger player will win, but this is not guaranteed; we can be fairly sure
that a user will reply to a particular email but we can never be certain.

Consequently, we need a principled framework for quantifying uncertainty
which will allow us to create applications and build solutions in ways that can
represent and process uncertain values. Fortunately, there is a simple framework
for manipulating uncertain quantities which uses probability to quantify the
degree of uncertainty. Many people are familiar with the idea of probability as
the frequency with which a particular event occurs. For example, we might say
that the probability of a coin landing heads is 50% which means that in a long
run of flips, the coin will land heads approximately 50% of the time. In this
book we will be using probabilities in a much more general sense to quantify
uncertainty, even for situations, such as a murder, which occur only once.

Let us apply the concept of probability to our murder mystery. The proba-
bility that Miss Auburn is the murderer can range from 0% to 100%, where 0%
means we are certain that Miss Auburn is innocent, while 100% means we are
certain that she committed the murder. We can equivalently express probabili-
ties on a scale from 0 to 1, where 1 is equivalent to 100%. From what we know
about our two characters, we might think it is unlikely that someone with the
impeccable credentials of Major Grey could commit such a heinous crime, and
therefore our suspicion is directed towards the enigmatic Miss Auburn. There-
fore, we might assume that the probability that Miss Auburn committed the
crime is 70%, or equivalently 0.7.

To express this assumption, we need to be precise about what this 70%
probability is referring to. We can do this by representing the identity of the
murderer with a random variable – this is a variable (a named quantity)
whose value we are uncertain about. We can define a random variable called
murderer which can take one of two values: it equals either Auburn or Grey.
Given this definition of murderer, we can write our 70% assumption in the form

P (murderer = Auburn) = 0.7 (1.1)

where the notation P () denotes the probability of the quantity contained inside
the brackets. Thus equation (1.1) can be read as “the probability that the
murderer was Miss Auburn is 70%”. Our assumption of 70% for the probability
that Auburn committed the murder may seem rather arbitrary – we will work
with it for now, but in the next chapter we shall see how such probabilities can
be learned from data.

We know that there are only two potential culprits and we are also assuming
that only one of these two suspects actually committed the murder (in other
words, they did not act together). Based on this assumption, the probability
that Major Grey committed the crime must be 30%. This is because the two
probabilities must add up to 100%, since one of the two suspects must be the
murderer. We can write this probability in the same form as above:

P (murderer = Grey) = 0.3. (1.2)

15

We can also express the fact that the two probabilities add up to 1.0:

P (murderer = Grey) + P (murderer = Auburn) = 1. (1.3)

This is an example of the normalization constraint for probabilities, which
states that the probabilities of all possible values of a random variable must add
up to 1.

If we write down the probabilities for all possible values of our random
variable murderer, we get:

P (murderer = Grey) = 0.3

P (murderer = Auburn) = 0.7. (1.4)

Written together this is an example of a probability distribution, because it
specifies the probability for every possible state of the random variable murderer.
We use the notation P (murderer) to denote the distribution over the random
variable murderer. This can be viewed as a shorthand notation for the com-
bination of P (murderer = Auburn) and P (murderer = Grey). As an example
of using this notation, we can write the general form of the normalization con-
straint: ∑

murderer

P (murderer) = 1 (1.5)

where the symbol ‘
∑

’ means ‘sum’ and the subscript ‘murderer’ indicates that
the sum is over the states of the random variable murderer, i.e. Auburn and
Grey. Using this notation, the states of a random variable do not need to be
listed out – very useful if there are a lot of possible states!

At this point it is helpful to introduce a pictorial representation of a prob-
ability distribution that we can use to explain some of the later calculations.
Figure 1.1 shows a square of area 1.0 which has been divided in proportion to
the probabilities of our two suspects being the murderer. The square has a total
area of 1.0 because of the normalization constraint, and is divided into two re-
gions. The region on the left has an area of 0.3, corresponding to the probability
that Major Grey is the murderer, while the region on the right has an area of
0.7, corresponding to the probability that Miss Auburn is the murderer. The
diagram therefore provides a simple visualization of these probabilities. If we
pick a point at random within the square, then the probability that it will land
in the region corresponding to Major Grey is 0.3 (or equivalently 30%) and the
probability that it will land in the region corresponding to Miss Auburn is 0.7
(or equivalently 70%). This process of picking a value for a random variable,
such that the probability of picking a particular value is given by a certain dis-
tribution is known as sampling. Sampling can be very useful for understanding
a probability distribution or for generating synthetic data sets – later in this
book we will see examples of both of these.

The Bernoulli distribution

The technical term for this type of distribution over a two-state random variable
is a Bernoulli distribution, which is usually defined over the two states true

16 CHAPTER 1. A MURDER MYSTERY

0.301.00

0.30

0.70

0.70

Murderer

Figure 1.1: Representation of probabilities using areas. The grey area represents
the probability that Major Grey is the murderer and the red area represents the
probability that Miss Auburn is the murderer.

and false. For our murder mystery, we can use true to mean Auburn and false

to mean Grey. Using these states, a Bernoulli distribution over the variable
murderer with a 0.7 probability of true (Auburn) and a 0.3 probability of false
(Grey) is written Bernoulli(murderer; 0.7). More generally, if the probability
of murderer being true is some number p, we can write the distribution of
murderer as Bernoulli(murderer; p).

Often when we are using probability distributions it will be unambiguous
which variable the distribution applies to. In such situations we can sim-
plify the notation and instead of writing Bernoulli(murderer; p) we just write
Bernoulli(p). It is important to appreciate that is just a shorthand notation
and does not represent a distribution over p. Since we will be referring to dis-
tributions frequently throughout this book, it is very useful to have this kind of
shorthand, to keep notation clear and concise.

We can use the Bernoulli distribution with different values of the proba-
bility to represent different judgements or assessments of uncertainty, ranging
from complete ignorance through to total certainty. For example, if we had abso-
lutely no idea which of our suspects was guilty, we could assign P (murderer) =
Bernoulli(murderer; 0.5) or equivalently P (murderer) = Bernoulli(0.5). In this
case both states have probability 50%. This is an example of a uniform dis-
tribution in which all states are equally probable. At the other extreme, if
we were absolutely certain that Auburn was the murderer, then we would set
P (murderer) = Bernoulli(1), or if we were certain that Grey was the murderer
then we would have P (murderer) = Bernoulli(0). These are examples of a
point mass, which is a distribution where all of the probability is assigned to
one value of the random variable. In other words, we are certain about the value
of the random variable.

17

So, using this new terminology, we have chosen the probability distribution
over murderer to be Bernoulli(0.7). Next, we will show how to relate different
random variables together to start solving the murder.

Self assessment 1.0

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. To get familiar with thinking about probabilities, estimate the probability
of the following events, expressing each probability as a percentage.

(a) After visiting a product page on Amazon, a user chooses to buy the
product.

(b) After receiving an email, a user chooses to reply to it.

(c) It will rain tomorrow where you live.

(d) When a murder is committed, the murderer turns out to be a member
of the victim’s family.

Given your estimates, what is the probability of these events not happen-
ing? (remember the normalization constraint). If you can, compare your
estimates for these probabilities with someone else’s and discuss where
and why you disagree.

2. Write your answers to question 1 as Bernoulli distributions over suitably
named random variables, using both the long and short forms.

3. Suppose I am certain that it will rain tomorrow where you live. What
Bernoulli distribution represents my belief? What would the distribution
be if instead I am certain that it will not rain tomorrow? What if I am
completely unsure if it would rain or not?

4. For one of the events in question 1, write a program to print out 100 sam-
ples from a Bernoulli distribution with your estimated probability of the
event happening (if you’re not a programmer, you can use a spreadsheet
instead). To sample from a Bernoulli(p) you first need a random number
between 0 and 1 (RAND in Excel or random number functions in any
programming language can give you this). To get one sample you then
see if the random number is less than p in which case the sample is true,
otherwise false. What proportion of the samples are true? You should
find this is close to the parameter p. If you increase to 1,000 or 10,000
samples, you should find that the proportion gets closer and closer to p.
We’ll see why this happens later in the book.

Review of concepts introduced in this section

probability A measure of uncertainty which lies between 0 and 1, where 0

18 CHAPTER 1. A MURDER MYSTERY

means impossible and 1 means certain. Probabilities are often expressed as a
percentages (such as 0%, 50% and 100%).

random variable A variable (a named quantity) whose value is uncertain.

normalization constraint The constraint that the probabilities given by a
probability distribution must add up to 1 over all possible values of the random
variable. For example, for a Bernoulli(p) distribution the probability of true
is p and so the probability of the only other state false must be 1− p.

probability distribution A function which gives the probability for every
possible value of a random variable. Written as P (A) for a random variable A.

sampling Randomly choosing a value such that the probability of picking any
particular value is given by a probability distribution. This is known as sampling
from the distribution. For example, here are 10 samples from a Bernoulli(0.7)
distribution: false, true, false, false, true, true, true, false, true and
true. If we took a very large number of samples from a Bernoulli(0.7) distri-
bution then the percentage of the samples equal to true would be very close to
70%.

Bernoulli distribution A probability distribution over a two-valued (binary)
random variable. The Bernoulli distribution has one parameter p which is the
probability of the value true and is written as Bernoulli(p). As an example,
Bernoulli(0.5) represents the uncertainty in the outcome of a fair coin toss.

uniform distribution A probability distribution where every possible value
is equally probable. For example, Bernoulli(0.5) is a uniform distribution since
true and false both have the same probability (of 0.5) and these are the only
possible values.

point mass A distribution which gives probability 1 to one value and proba-
bility 0 to all other values, which means that the random variable is certain to
have the specified value. For example, Bernoulli(1) is a point mass indicating
that the variable is certain to be true.

1.1. INCORPORATING EVIDENCE 19

1.1 Incorporating evidence

Dr Bayes searches the mansion thoroughly. He finds that the only
weapons available are an ornate ceremonial dagger and an old army
revolver. “One of these must be the murder weapon”, he concludes.

So far, we have considered just one random variable: murderer. But now
that we have some new information about the possible murder weapons, we can
introduce a new random variable, weapon, to represent the choice of murder
weapon. This new variable can take two values: revolver or dagger. Given
this new variable, the next step is to use probabilities to express its relationship
to our existing murderer variable. This will allow us to reason about how these
variables affect each other and to make progress in solving the murder.

Suppose Major Grey were the murderer. We might believe that the prob-
ability of his choosing a revolver rather than a dagger for the murder is, say,
90% on the basis that he is ex-military and would be familiar with the use of
guns. But if instead Miss Auburn were the murderer, we might think the prob-
ability of her using a revolver would be much smaller, say 20%, on the basis
that she is unlikely to be familiar with the operation of an old revolver and
is therefore more likely to choose the dagger. This means that the probability
distribution over the random variable weapon depends on whether the murderer
is Major Grey or Miss Auburn. This is known as a conditional probability
distribution because the probability values it gives vary depending on another
random variable, in this case murderer. If Major Grey were the murderer, the
conditional probability of choosing the revolver can be expressed like so:

P (weapon = revolver|murderer = Grey) = 0.9. (1.6)

Here the quantity on the left side of this equation is read as “the probability
that the weapon is the revolver given that the murderer is Grey”. It describes
a probability distribution over the quantity on the left side of the vertical ‘con-
ditioning’ bar (in this case the value of weapon) which depends on the value
of any quantities on the right hand side of the bar (in this case the value of
murderer). We also say that the distribution over weapon is conditioned on the
value of murderer.

Since the only other possibility for the weapon is a dagger, the probability
that Major Grey would choose the dagger must be 10%, and hence

P (weapon = dagger|murderer = Grey) = 0.1. (1.7)

Again, we can also express this information in pictorial form, as shown in Fig-
ure 1.2. Here we see a square with a total area of 1.0. The upper region, with
area 0.9, corresponds to the conditional probability of the weapon being the
revolver, while the lower region, with area 0.1, corresponds to the conditional
probability of the weapon being the dagger. If we pick a point at random uni-
formly from within the square (in other words, sample from the distribution),
there is a 90% probability that the weapon will be the revolver.

20 CHAPTER 1. A MURDER MYSTERY

0.90

0.10

0.90

0.10

1.00

Figure 1.2: Representation of the probabilities for the two weapons, conditional
on Major Grey being the murderer.

Now suppose instead that it was Miss Auburn who committed the murder.
Recall that we considered the probability of her choosing the revolver was 20%.
We can therefore write

P (weapon = revolver|murderer = Auburn) = 0.2. (1.8)

Again, the only other choice of weapon is the dagger and so

P (weapon = dagger|murderer = Auburn) = 0.8. (1.9)

This conditional probability distribution can be represented pictorially as shown
in Figure 1.3.

0.20

0.80

0.20

0.80

1.00

Figure 1.3: Representation of the probabilities for the two weapons, conditional
on Miss Auburn being the murderer.

1.1. INCORPORATING EVIDENCE 21

We can combine all of the above information into the more compact form

P (weapon = revolver|murderer) =

{
0.9 if murderer = Grey

0.2 if murderer = Auburn.
(1.10)

This can be expressed in an even more compact form as P (weapon|murderer).
As before, we have a normalization constraint which is a consequence of the
fact that, for each of the suspects, the weapon used must have been either the
revolver or the dagger. This constraint can be written as∑

weapon

P (weapon|murderer) = 1 (1.11)

where the sum is over the two states of the random variable weapon, that is for
weapon=revolver and for weapon=dagger, with murderer held at any fixed
value (Grey or Auburn). Notice that we do not expect that the probabilities add
up to 1 over the two states of the random variable murderer, which is why the
two numbers in equation (1.10) do not add up to 1. These probabilities do not
need to add up to 1, because they refer to the probability that the revolver was
the murder weapon in two different circumstances: if Grey was the murderer
and if Auburn was the murderer. For example, the probability of choosing the
revolver could be high in both circumstances or low in both circumstances – so
the normalization constraint does not apply.

Conditional probabilities can be written in the form of a conditional prob-
ability table (CPT) – which is the form we will often use in this book. For
example, the conditional probability table for P (weapon|murderer) looks like
this:

murderer weapon=revolver weapon=dagger

Auburn 0.200 0.800

Grey 0.900 0.100

Table 1.1: The conditional probability table for P (weapon|murderer). Table
columns correspond to values of the conditioned variable weapon, rows corre-
spond to values of the conditioning variable murderer, and table cells contain
the conditional probability values. The normalization constraint means that the
values in any row must add up to 1. We have also added blue bars to the table
to provide a visual indication of the probability values.

As we just discussed, the normalization constraint means that the probabil-
ities in the rows of Table 1.1 must add up to 1, but not the probabilities in the
columns.

Independent variables

We have assumed that the probability of each choice of weapon changes depend-
ing on the value of murderer. We say that these two variables are dependent.

22 CHAPTER 1. A MURDER MYSTERY

More commonly, we tend to focus on what variables do not affect each other,
in which case we say they are independent variables. Consider for example,
whether it is raining or not outside the Old Tudor Mansion at the time of the
murder. It is reasonable to assume that this variable raining has no effect
whatsoever on who the murderer is (nor is itself affected by who the murderer
is). So we have assumed that the variables murderer and raining are inde-
pendent. You can test this kind of assumption by asking the question “Does
learning about the one variable, tell me anything about the other variable?”.
So in this case, the question is “Does learning whether it was raining or not,
tell me anything about the identity of the murderer?”, for which a reasonable
answer is “No”.

If we tried to write down a conditional probability for P (raining|murderer),
then it would give the same probability for raining whether murderer was Grey
or Auburn. If this were not true, learning about one variable would tell us some-
thing about the other variable, through a change in its probability distribution.
We can express independence between these two variables mathematically.

P (raining|murderer) = P (raining) (1.12)

What this equation says is that the probability of raining given knowledge of
the murderer is exactly the same as the probability of raining without taking
into account murderer. In other words, the two variables are independent. This
also holds the other way around:

P (murderer|raining) = P (murderer) (1.13)

Independence is an important concept in model-based machine learning, since
any variable we do not explicitly include in our model is assumed to be indepen-
dent of all variables in the model. We will see further examples of independence
later in this chapter.

Let us take a moment to recap what we have achieved so far. In the first
section, we specified the probability that the murderer was Major Grey (and
therefore the complementary probability that the murderer was Miss Auburn).
In this section, we also wrote down the probabilities for different choices of
weapon for each of our suspects. In the next section, we will see how we can use
all these probabilities to incorporate evidence from the crime scene and reason
about the identity of the murderer.

Self assessment 1.1

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. To get familiar with thinking about conditional probabilities, estimate
conditional probability tables for each of the following.

(a) The probability of being late for work, conditioned on whether or not
traffic is bad.

1.1. INCORPORATING EVIDENCE 23

(b) The probability a user replies to an email, conditioned on whether or
not he knows the sender.

(c) The probability that it will rain on a particular day, conditioned on
whether or not it rained on the previous day.

Ensure that the rows of your conditional probability tables add up to one.
If you can, compare your estimates for these probabilities with someone
else’s and discuss where and why you disagree.

2. Pick an example, like one of the ones above, from your life or work. You
should choose an example where one binary (two-valued) variable affects
another. Estimate the conditional probability table that represents how
one of these variables affects the other.

3. For one of the events in question 1, write a program to print out 100
samples of the conditioned variable for each value of the conditioning
variable. Print the samples side by side and compare the proportion of
samples in which the event occurs for when the conditioning variable is
true to when it is false. Does the frequency of events look consistent
with your common sense in each case? If not, go back and refine your
conditional probability table and try again.

Review of concepts introduced in this section

conditional probability distribution A probability distribution over some
random variable A which changes its value depending on some other variable B,
written as P (A|B). For example, if the probability of choosing each murder
weapon (weapon) depends on who the murderer is (murderer), we can capture
this in the conditional probability distribution P (weapon|murderer). Condi-
tional probability distributions can also depend on more than one variable, for
example P (A|B, C, D).

conditional probability table A table which defines a conditional proba-
bility, where the columns correspond to values of the conditioned variable and
rows correspond to the values of the conditioning variable(s). For any setting
of the conditioning variable(s), the probabilities over the conditioned variable
must add up to 1 – so the values in any row must add up to 1. For example,
here is a conditional probability table capturing the conditional probability of
weapon given murderer:

murderer weapon=revolver weapon=dagger

Auburn 0.200 0.800

Grey 0.900 0.100

24 CHAPTER 1. A MURDER MYSTERY

independent variables Two random variables are independent if learning
about one does not provide any information about the other. Mathematically,
two variables A and B are independent if

P (A|B) = P (A)

P (B|A) = P (B)

This is an important concept in model-based machine learning, since all variables
in the model are assumed to be independent of any variable not in the model.

1.2. A MODEL OF A MURDER 25

1.2 A model of a murder

Searching carefully around the library, Dr Bayes spots a bullet lodged
in the book case. “Hmm, interesting”, he says, “I think this could be
an important clue”.

So it seems that the murder weapon was the re-
volver, not the dagger. Our intuition is that this new
evidence points more strongly towards Major Grey
than it does to Miss Auburn, since the Major, with
his military background, is more likely to have experi-
ence with a revolver than Miss Auburn. But how can
we use this information?

A convenient way to think about the probabilities
we have looked at so far is as a description of the pro-
cess by which we believe the murder took place, taking
account of the various sources of uncertainty. So, in this process, we first pick
the murderer with the help of Figure 1.1. This shows that there is a 30% chance
of choosing Major Grey and a 70% chance of choosing Miss Auburn. Let us sup-
pose that Miss Auburn was the murderer. We can then refer to Figure 1.3 to
pick which weapon she used. There is a 20% chance that she would have used
the revolver and an 80% chance that she would have used the dagger. Let’s
consider the event of Miss Auburn picking the revolver. The probability of
choosing Miss Auburn and the revolver is therefore 70% × 20% = 14%. This
is the joint probability of choosing Auburn and revolver. If we repeat this
exercise for the other three combinations of murderer and weapon we obtain
the joint probability distribution over the two random variables, which we can
illustrate pictorially as seen in Figure 1.4.

0.27

0.03

0.90

0.10

0.30

0.14

0.56

0.20

0.80

0.70

Murderer

Figure 1.4: Representation of the joint probabilities for the two random variables
murderer and weapon.

26 CHAPTER 1. A MURDER MYSTERY

Figure 1.5 below shows how this joint distribution was constructed from the
previous distributions we have defined. We have taken the left-hand slice of the
P (murderer) square corresponding to Major Grey, and divided it vertically in
proportion to the two regions of the conditional probability square for Grey.
Likewise, we have taken the right-hand slice of the P (murderer) square corre-
sponding Miss Auburn, and divided it vertically in proportion to the two regions
of the conditional probability square for Auburn.

0.27

0.03

0.14

0.56

= 0.30 0.70 × 0.90

0.10

0.20

0.80

P (weapon, murderer) P (murderer) P (weapon|murderer)

Figure 1.5: The joint distribution for our two-variable model, shown as a product of two factors.

We denote this joint probability distribution by P (weapon, murderer), which
should be read as “the probability of weapon and murderer”. In general, the
joint distribution of two random variables A and B can be written P (A, B) and
specifies the probability for each possible combination of settings of A and B.
Because probabilities must sum to one, we have∑

A

∑
B

P (A, B) = 1. (1.14)

Here the notation
∑
A denotes a sum over all possible states of the random

variable A, and likewise for B. This corresponds to the total area of the square
in Figure 1.4 being 1, and arises because we assume the world consists of one,
and only one, combination of murderer and weapon. Picking a point randomly in
this new square corresponds to sampling from the joint probability distribution.

1.2.1 Probabilistic models

We can now introduce the central concept of this book, the probabilistic
model. A probabilistic model consists of:

• A set of random variables,

• A joint probability distribution over these variables (i.e. a distribution
that assigns a probability to every configuration of these variables such
that the probabilities add up to 1 over all possible configurations).

Once we have a probabilistic model, we can reason about the variables it con-
tains, make predictions, learn about the values of some random variables given

1.2. A MODEL OF A MURDER 27

the values of others, and in general, answer any possible question that can be
stated in terms of the random variables included in the model. This makes a
probabilistic model an incredibly powerful tool for doing machine learning.

We can think of a probabilistic model as a set of assumptions we are mak-
ing about the problem we are trying to solve, where any assumptions involving
uncertainty are expressed using probabilities. The best way to understand how
this is done, and how the model can be used to reason and make predictions, is
by looking at example models. In this chapter, we give the example of a prob-
abilistic model of a murder. In later chapters, we shall build a variety of more
complex models for other applications. All the machine learning applications in
this book will be solved solely through the use of probabilistic models.

1.2.2 Two rules for working with probabilistic models

So for our murder mystery, we have a probabilistic model with two variables
murderer and weapon where the joint probability distribution over those vari-
ables is the one shown in Figure 1.4. To use this model, we now need to introduce
two key rules which allow us to manipulate the probability distributions in a
model.

From the discussion above, we see that the joint probability distribution for
our model is obtained by taking the probability distribution over murderer and
multiplying by the conditional distribution of weapon. This can be written in
the form

P (weapon, murderer) = P (murderer)P (weapon|murderer). (1.15)

Equation (1.15) is an example of a very important result called the product
rule of probability. The product rule says that the joint distribution of A and
B can be written as the product of the distribution over A and the conditional
distribution of B conditioned on the value of A, in the form

P (A, B) = P (A)P (B|A). (1.16)

Now suppose we sum up the values in the two left-hand regions of Figure 1.4
corresponding to Major Grey. Their total area is 0.3, as we expect because we
know that the probability of Grey being the murderer is 0.3. The sum is over
the different possibilities for the choice of weapon, so we can express this in the
form ∑

weapon

P (weapon, murderer = Grey) = P (murderer = Grey). (1.17)

Similarly, the entries in the second column, corresponding to the murderer being
Miss Auburn, must add up to 0.7. Combining these together we can write∑

weapon

P (weapon, murderer) = P (murderer). (1.18)

28 CHAPTER 1. A MURDER MYSTERY

This is an example of the sum rule of probability, which says that the
probability distribution over a random variable A is obtained by summing the
joint distribution P (A, B) over all values of B

P (A) =
∑
B

P (A, B). (1.19)

In this context, the distribution P (A) is known as the marginal distribution
for A and the act of summing out B is called marginalisation. We can equally
apply the sum rule to marginalise over the murderer to find the probability that
each of the weapons was used, irrespective of who used them. If we sum the
areas of the top two regions of Figure 1.4 we see that the probability of the
weapon being the revolver was 0.27 + 0.14 = 0.41, or 41%. Similarly, if we
add up the areas of the bottom two regions we see that the probability that
the weapon was the dagger is 0.03 + 0.56 = 0.59 or 59%. The two marginal
probabilities then add up to 1, which we expect since the weapon must have
been either the revolver or the dagger.

The sum and product rules are very general. They apply not just when
A and B are binary random variables, but also when they are multi-state ran-
dom variables, and even when they are continuous (in which case the sums are
replaced by integrations). Furthermore, A and B could each represent sets of
several random variables. For example, if B ≡ {C, D}, then from the product
rule (1.16) we have

P (A, C, D) = P (A)P (C, D|A) (1.20)

and similarly the sum rule (1.19) gives

P (A) =
∑
C

∑
D

P (A, C, D). (1.21)

The last result is particularly useful since it shows that we can find the marginal
distribution for a particular random variable in a joint distribution by summing
over all the other random variables, no matter how many there are.

Together, the product rule and sum rule provide the two key results that we
will need throughout the book in order to manipulate and calculate probabilities.
It is remarkable that the rich and powerful complexity of probabilistic modelling
is all founded on these two simple rules.

1.2.3 Inference using the joint distribution

We now have the tools that we need to incorporate the fact that the weapon was
the revolver. Intuitively, we expect that this should increase the probability that
Grey was the murderer but to confirm this we need to calculate that updated
probability. The process of computing revised probability distributions after
we have observed the values of some the random variables, is called inference.
Inference is the cornerstone of model-based machine learning – it can be used for
reasoning about a model, learning from data, making predictions with a model
– in fact any machine learning task can be achieved using inference.

1.2. A MODEL OF A MURDER 29

We can do inference in our model using the joint probability distribution
shown in Figure 1.4. Our model says that, before we observe which weapon
was used to commit the crime, all points within this square are equally likely.
However, we now know that the weapon was the revolver. We can therefore rule
out the two lower regions which correspond to the weapon being the dagger, as
illustrated in Figure 1.6.

0.270.90

0.10

0.30

0.14 0.20

0.80

0.70

Murderer

Figure 1.6: This shows the joint distribution from Figure 1.4 in which the regions
corresponding to the dagger have been eliminated.

Because all points in the remaining two regions are equally likely, we see
that the probability of the murderer being Major Grey is given by the fraction
of the remaining area given by the grey box on the left.

P (murderer = Grey|weapon = revolver) =
0.27

0.27 + 0.14
' 0.66

in other words a 66% probability. This is significantly higher than the 30%
probability we had before observing that the weapon used was the revolver.
We see that our intuition is therefore correct and it now looks more likely that
Grey is the murderer rather than Auburn. The probability that we assigned to
Grey being the murderer before seeing the evidence of the bullet is sometimes
called the prior probability (or just the prior), while the revised probability
after seeing the new evidence is called the posterior probability (or just the
posterior).

The probability that Miss Auburn is the murderer is similarly given by

P (murderer = Auburn|weapon = revolver) =
0.14

0.27 + 0.14
' 0.34.

Because the murderer is either Grey or Auburn these two probabilities again
sum to 1. We can capture this pictorially by re-scaling the regions in Figure 1.6
to give the diagram shown in Figure 1.7.

30 CHAPTER 1. A MURDER MYSTERY

0.661.00

0.66

0.34

0.34

Murderer

Figure 1.7: Representation of the posterior probabilities that Grey or Auburn
was the murderer, given that the weapon is the revolver.

We have seen that, as new data, or evidence, is collected we can use the
product and sum rules to revise the probabilities to reflect changing levels of
uncertainty. The system can be viewed as having learned from that data.

So, after all this hard work, have we finally
solved our murder mystery? Well, given the evi-
dence so far it appears that Grey is more likely to
be the murderer, but the probability of his guilt
currently stands at 66% which feels too small for
a conviction. But how high a probability would
we need? To find an answer we turn to William
Blackstone’s principle of 1765:

“Better that ten guilty persons escape
than one innocent suffer.”

We therefore need a probability of guilt for our
murderer which exceeds 10

10+1 ≈ 91%. To achieve
this level of proof we will need to gather more evidence from the crime scene,
and to make a corresponding extension to our model in order to incorporate
this new evidence. We’ll look at how to do this in the next section.

Self assessment 1.2

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Check for yourself that the joint probabilities for the four areas in Fig-
ure 1.4 are correct and confirm that their total is 1. Use this figure to

1.2. A MODEL OF A MURDER 31

compute the posterior probability over murderer, if the murder weapon
had been the dagger rather than the revolver.

2. Choose one of the following scenarios (continued from the previous self
assessment) or choose your own scenario

(a) Whether you are late for work, depending on whether or not traffic
is bad.

(b) Whether a user replies to an email, depending on whether or not he
knows the sender.

(c) Whether it will rain on a particular day, depending on whether or
not it rained on the previous day.

For your selected scenario, pick a suitable prior probability for the condi-
tioning variable (for example, whether the traffic is bad, whether the user
knows the sender, whether it rained the previous day). Recall the condi-
tional probability table that you estimated in the previous self assessment.
Using the prior and this conditional distribution, use the product rule to
calculate the joint distribution over the two variables in the scenario. Draw
this joint distribution pictorially, like the example of Figure 1.4. Make sure
you label each area with the probability value, and that these values all
add up to 1.

3. Now assume that you know the value of the conditioned variable, for exam-
ple, assume that you are late for work on a particular day. Now compute
the posterior probability of the conditioning variable, for example, the
probability that the traffic was bad on that day. You can achieve this
using your diagram from the previous question, by crossing out the areas
that don’t apply and finding the fraction of the remaining area where the
conditioning event happened.

4. For your joint probability distribution, write a program to print out 1,000
joint samples of both variables. Compute the fraction of samples that
have each possible pair of values. Check that this is close to your joint
probability table. Now change the program to only print out those samples
which are consistent with your known value from the previous question
(for example, samples where you are late for work). What fraction of these
samples have each possible pair of values now? How does this compare to
your answer to the previous question?

Review of concepts introduced in this section

joint probability A probability distribution over multiple variables which
gives the probability of the variables jointly taking a particular configuration of
values. For example, P (A, B, C) is a joint distribution over the random variables
A, B, and C.

32 CHAPTER 1. A MURDER MYSTERY

probabilistic model A set of random variables combined with a joint dis-
tribution that assigns a probability to every configuration of these variables.

product rule of probability The rule that the joint distribution of A and
B can be written as the product of the distribution over A and the conditional
distribution of B conditioned on the value of A, in the form

P (A, B) = P (A)P (B|A).

sum rule of probability The rule that the probability distribution over a
random variable A is obtained by summing the joint distribution P (A, B) over
all values of B

P (A) =
∑
B

P (A, B).

marginal distribution The distribution over a random variable computed
by using the sum rule to sum a joint distribution over all other variables in the
distribution.

marginalisation The process of summing a joint distribution to compute a
marginal distribution.

inference The process of computing probability distributions over certain
specified random variables, usually after observing the value of some other vari-
ables in the model.

prior probability The probability distribution over a random variable prior
to seeing any data. Careful choice of prior distributions is an important part of
model design.

posterior probability The updated probability distribution over a random
variable after some data has been taken into account. The aim of inference is
to compute posterior probability distributions over variables of interest.

1.3. WORKING WITH LARGER MODELS 33

1.3 Working with larger models

We now wish to incorporate more evidence from the crime scene – for each new
piece of evidence that we consider, we will need to introduce another random
variable into our model. So far we’ve only had to cope with a model of just two
random variables: murderer and weapon. For this two-variable model, we were
able to write the joint distribution pictorially, like so:

0.27

0.03

0.14

0.56

= 0.30 0.70 × 0.90

0.10

0.20

0.80

P (weapon, murderer) P (murderer) P (weapon|murderer)

Figure 1.8: The joint distribution for our two-variable model, shown as a product of two factors.

Unfortunately, if we increase the number of random variables in our model
beyond two (or maybe three), we cannot represent the joint distribution using
this pictorial notation. But in real models there will typically be anywhere
from hundreds to hundreds of millions of random variables. We need a different
notation to represent and work with such large joint distributions.

The notation that we will use exploits the fact that most joint distributions
can be written as a product of a number of terms or factors each of which refers
to only a small number of variables. For example, our joint distribution above
is the product of two factors: P (murderer) which refers to one variable and
P (weapon|murderer) which refers to two variables. Even for joint distributions
with millions of variables, the factors which make up the distribution usually
refer to only a few of these variables. As a result, we can represent a complex
joint distribution using a factor graph that shows which factors make up the
distribution consists and what variables those factors refer to.

Figure 1.9 shows a factor graph for the two-variable joint distribution above.
There are two types of node in the graph: a variable node for each variable in
the model and a factor node for each factor in the joint distribution. Variable
nodes are shown as white ellipses (or rounded boxes) containing the name of
the variable. Factor nodes are small black squares, labelled with the factor
that they represent. We connect each factor node to the variable nodes that
it refers to. For example, the P (murderer) factor node is connected only to
the murderer variable node since that is the only variable it refers to, whilst
P (weapon|murderer) connects to both the weapon and murderer variable nodes,
since it refers to both variables. Finally, if the factor defines a distribution over
one of its variables, we draw an arrow on the edge pointing to that variable
(the child variable). If the factor defines a conditional distribution, the other

34 CHAPTER 1. A MURDER MYSTERY

murderer

weapon

P(murderer)

P(weapon|murderer)

Figure 1.9: Factor graph for the murder mystery model. The model contains
two random variables murderer and weapon, shown as white nodes, and two
factors P (murderer) and P (weapon|murderer), shown as black squares.

edges from that factor connect to the variables being conditioned on (the parent
variables) and do not have arrows.

The factor graph of Figure 1.9 provides a complete description of our joint
probability, since it can be found by computing the product of the distributions
represented by the factor nodes. As we look at more complex factor graphs
throughout the book, it will always hold that the joint probability distribution
over the random variables (represented by the variable nodes) can be written as
the product of the factors (represented by the factor nodes). The joint distribu-
tion gives a complete specification of a model, because it defines the probability
for every possible combination of values for all of the random variables in the
model. Notice that in Figure 1.8 the joint distribution was represented explicitly,
but in the factor graph it is represented only indirectly, via the factors.

Since we want our factor graphs to tell us as much as possible about the joint
distribution, we should label the factors as precisely as possible. For example,
since we know that P (murderer) defines a prior distribution of Bernoulli(0.7)
over murderer, we can label the factor “Bernoulli(0.7)”. We do not need to
mention the murderer variable in the factor label since the factor is only con-
nected to the murderer variable node, and so the distribution must be over
murderer. This allows more informative labelling of the factor graph, like so:

1.3. WORKING WITH LARGER MODELS 35

murderer

weapon

Bernoulli(0.7)

P(weapon|murderer)

Figure 1.10: Factor graph representation of the murder mystery model with the
Bernoulli prior over murderer labelled explicitly.

In this book, we will aim to label factors in our factor graphs so that the function
represented by each factor is as clear as possible.

There is one final aspect of factor graph notation that we need to cover.
When doing inference in our two-variable model, we observed the random vari-
able weapon to have the value revolver. This step of observing random vari-
ables is such an important one in model-based machine learning that we in-
troduce a special graphical notation to depict it. When a random variable is
observed, the corresponding node in the factor graph is shaded (and sometimes
also labelled with the observed value), as shown for our murder mystery in
Figure 1.11.

weapon=revolver

murderer

Bernoulli(0.7)

P(weapon|murderer)

Figure 1.11: The factor graph for the murder mystery, with the weapon node
shaded to indicate that this random variable has been observed, and is fixed to
the value revolver.

Representing a probabilistic model using a factor graph gives many benefits:

• It provides a simple way to visualize the structure of a probabilistic model
and see which variables influence each other.

• It can be used to motivate and design new models, by making appropriate
modifications to the graph.

• The assumptions encoded in the model can be clearly seen and communi-
cated to others.

36 CHAPTER 1. A MURDER MYSTERY

• Insights into the properties of a model can be obtained by operations
performed on the graph.

• Computations on the model (such as inference) can be performed by effi-
cient algorithms that exploit the factor graph structure.

We shall illustrate these points in the context of specific examples throughout
this book.

1.3.1 Inference without computing the joint distribution

Having observed the value of weapon, we previously computed the full joint dis-
tribution and used it to evaluate the posterior distribution of murderer. How-
ever, for most real-world models it is not possible to do this, since the joint
distribution would be over too many variables to allow it to be computed di-
rectly. Instead, now that we have our joint distribution represented as a product
of factors, we can arrive at the same result by using only the individual factors
– in a way which is typically far more efficient to compute. The key lies in
applying the product and sum rules of probability in an appropriate way. From
the product rule (1.15) we have

P (weapon, murderer) = P (weapon|murderer)P (murderer). (1.22)

However, by symmetry we can equally well write

P (weapon, murderer) = P (murderer|weapon)P (weapon). (1.23)

Equating the right-hand sides of these two equations and re-arranging we obtain

P (murderer|weapon) =
P (weapon|murderer)P (murderer)

P (weapon)
. (1.24)

This is an example of Bayes’ theorem or Bayes’ rule Bayes [1763] which
plays a fundamental role in many inference calculations (see Panel 1.1). Here
P (murderer) is the prior probability distribution over the random variable
murderer and is one of the things we specified when we defined our model
for the murder mystery. Similarly, P (weapon|murderer) is also something we
specified, and is called the likelihood function and should be viewed as a
function of the random variable murderer. The quantity on the left-hand side
P (murderer|weapon) is the posterior probability distribution over the murderer
random variable, i.e. the distribution after we have observed the evidence of the
revolver.

The denominator P (weapon) in equation (1.24) plays the role of a normaliza-
tion constant and ensures that the left hand side of Bayes’ theorem is correctly
normalized (i.e. adds up to 1 when summed over all possible states of the ran-
dom variable murderer). It can be computed from the prior and the likelihood
using

P (weapon) =
∑

murderer

P (weapon|murderer)P (murderer) (1.25)

1.3. WORKING WITH LARGER MODELS 37

which follows from the product and sum rules. When working with Bayes’ rule,
it is sometimes useful to drop this denominator P (weapon) and instead write

P (murderer|weapon) ∝ P (weapon|murderer)P (murderer) (1.26)

where ∝ means that the left-hand side is proportional to the right-hand side (i.e.
they are equal up to a constant that does not depend on the value of murderer).
We do not need to compute the denominator because the normalization con-
straint tells us that the conditional probability distribution P (murderer|weapon)
must add up to one across all values of murderer. Once we have evaluated the
right hand side of (1.26) to give a number for each of the two values of murderer,
we can scale these two numbers so that they sum up to one, to get the resulting
posterior distribution.

Now let us apply Bayes’ rule to the murder mystery problem. We know that
weapon=revolver, so we can evaluate the right hand side of equation (1.26)
for both murderer=Grey and murderer=Auburn giving:

P (murderer = Grey|weapon = revolver) ∝ 0.3× 0.9 = 0.27

P (murderer = Auburn|weapon = revolver) ∝ 0.7× 0.2 = 0.14.

These numbers sum to 0.41. To get probabilities, we need to scale both numbers
to sum to 1 (by dividing by 0.41) which gives:

P (murderer = Grey|weapon = revolver) =
0.27

0.41
' 0.66

P (murderer = Auburn|weapon = revolver) =
0.14

0.41
' 0.34.

This is the same result as before. Although we have arrived at the same result by
a different route, this latter approach using Bayes’ theorem is preferable as we
did not need to compute the joint distribution. With only two random variables
so far in our murder mystery this might not look like a significant improvement,
but as we go to more complex problems we will see that successive applications
of the rules of probability allows us to work with small sub-sets of random
variables – even in models with millions of variables!

Self assessment 1.3

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Use Bayes’ theorem to compute the posterior probability over murderer,
for the case that the murder weapon was the dagger rather than the re-
volver. Compare this to your answer from the previous self assessment.

2. For the scenario you chose in the previous self assessment, draw the factor
graph corresponding to the joint distribution. Ensure that you label the
factors as precisely as possible. Verify that the product of factors in the
factor graph is equal to the joint distribution.

38 CHAPTER 1. A MURDER MYSTERY

3. Repeat the inference task from the previous self assessment (computing the
posterior probability of the conditioning variable) using Bayes’ theorem
rather than using the joint distribution. Check that you get the same
answer as before.

Review of concepts introduced in this section

factors Functions (usually of a small number of variables) which are multiplied
together to give a joint probability distribution (which may be over a large
number of variables). Factors are represented as small black squares in a factor
graph.

Panel 1.1 – Bayes’ Theorem

Bayes’ theorem allows us to express a conditional probability distribution such
as P (A|B) in terms of the ‘reversed’ conditional distribution P (B|A):

P (A|B) =
P (A)P (B|A)

P (B)
. (1.27)

Bayes’ theorem is particularly useful when we want to update the distribution of
some uncertain quantity A when we are given some new information represented
by the random variable B. For instance, in the murder mystery we want to know
the identity of the murderer A and we have just discovered the choice of weapon
B. If we didn’t know B then our knowledge of A would be described by P (A),
which we call the prior. Once we know the value of B we can compute the revised
distribution P (A|B) known as the posterior. They are related by the reversed
conditional distribution P (B|A) which is known as the likelihood. Note that the
likelihood should not be viewed as a probability distribution over B, because
the value of B is assumed to be known, but rather as a function of the random
variable A, and for this reason it is also known as the likelihood function. Note
also that its sum over A does not necessarily equal 1.
We can also write Bayes’ theorem in words:

posterior =
prior× likelihood

normalizer
. (1.28)

Here the ‘normalizer’ is just the value of P (B) and is the quantity which ensures
that the posterior distribution is normalized. From the sum rule (1.19) it is
given by

P (B) =
∑
A

P (A)P (B|A) (1.29)

and can therefore be computed from the prior and the likelihood function.

1.3. WORKING WITH LARGER MODELS 39

factor graph A representation of a probabilistic model which uses a graph
with factor nodes (black squares) for each factor in the joint distribution and
variable nodes (white, rounded) for each variable in the model. Edges connect
each factor node to the variable nodes that it refers to.

variable node A node in a factor graph that represents a random variable
in the model, shown as a white ellipse or rounded box containing the variable
name.

factor node A node in a factor graph that represents a factor in the joint
distribution of a model, shown as a small black square labelled with the factor
name.

child variable For a factor node, the connected variable that the arrow points
to. This indicates that the factor defines a probability distribution over this
variable, possibly conditioned on the other variables connected to this factor.
The child variable for a factor is usually drawn directly below the factor.

parent variables For a factor node, the connected variable(s) with edges
that do not have arrows pointing to them. When a factor defines a conditional
probability distribution, these are the variables that are conditioned on. The
parent variables for a factor are usually drawn above the factor.

Bayes’ theorem The fundamental theorem that lets us do efficient inference
in probabilistic models. It defines how to update our belief about a random
variable A after receiving new information B, so that we move from our prior
belief P (A) to our posterior belief given B, P (A|B).

P (A|B) =
P (A)P (B|A)

P (B)
.

See Panel 1.1 for more details.

likelihood function A conditional probability viewed as a function of its
conditioned variable. For example, P (B|A) can be viewed as a function of A

when B is observed and we are interested in inferring A. It is important to note
that this not a distribution over A, since P (B|A) does not have to sum to 1 over
all values of A. To get a distribution over A from a likelihood function, you need
to apply Bayes’ theorem (see Panel 1.1).

40 CHAPTER 1. A MURDER MYSTERY

1.4 Extending the model

Dr Bayes pulls out his trusty magnifying glass and continues his
investigation of the crime scene. As he examines the floor near Mr
Black’s body he discovers a hair lying on top of the pool of blood.
“Aha” exclaims Dr Bayes “this hair must belong to someone who
was in the room when the murder took place!” Looking more closely
at the hair, Dr Bayes sees that it is not the lustrous red of Miss
Auburn’s vibrant locks, nor indeed the jet black of the victim’s hair,
but the distinguished silver of Major Grey!

Now that we are equipped with the concept of
factor graphs, we can extend our model to incor-
porate this additional clue from the crime scene.
The hair is powerful evidence indicating that Ma-
jor Grey was present at the time of the murder,
but there is also the possibility that the hair was
stolen by Miss Auburn and planted at the crime
scene to mislead our perceptive sleuth. As before,
we can capture these thoughts quantitatively using
a conditional probability distribution. Let us de-
note the new information by the random variable
hair, which takes the value true if Major Grey’s
hair is discovered at the scene of the crime, and
false otherwise. Clearly the discovery of the hair points much more strongly
to Grey than to Auburn, but it does not rule out Auburn completely.

Suppose we think there is a 50% chance that Grey would accidentally leave
one of his hairs at the crime scene if he were the murderer, but that there is
only a 5% chance that Auburn would think to plant a grey hair if she were the
murderer. The conditional probability distribution would then be

P (hair = true|murderer) =

{
0.5 if murderer = Grey

0.05 if murderer = Auburn.
(1.30)

As we have seen before, since this represents a conditional probability condi-
tioned on the value of murderer, not a probability distribution over murderer,
the numbers in (1.30) do not have to add up to one.

In writing the conditional probability this way, we have actually made an
additional assumption: that the probability of one of Major Grey’s hairs being
found at the scene of the crime only depends on who committed the murder,
and not anything else – including the choice of weapon that was used to commit
the murder. This assumption has arisen because the conditional probability in
(1.30) does not include weapon in the variables being conditioned on. Mathe-
matically this assumption can be expressed as

P (hair|weapon, murderer) = P (hair|murderer). (1.31)

1.4. EXTENDING THE MODEL 41

weapon=revolver hair=true

murderer

P(murderer)

P(weapon|murderer) P(hair|murderer)

Figure 1.12: The factor graph for the murder mystery after the addition of the
new evidence. Both the weapon node and the hair node are shaded to indicate
that these random variables have been set to their observed values. Note the
absence of an edge connecting the weapon random variable with the factor node
representing P (hair|murderer).

which says that the distribution of hair is independent of the value of weapon
once we have conditioned on the value of murderer. For this reason it is known
as a conditional independence assumption. Notice that (1.31) has a similar
form to the equations which hold when two variable are independent, e.g. (1.12),
but has an additional conditioning variable on both sides.

The question to ask when considering a conditional independence assump-
tion is “Does learning about one variable, tell me anything about the other
variable, if I knew the value of the conditioning variable?”. In this case that
would be “Does learning about the hair, tell me anything about the choice of
weapon, if I already knew who the murderer was?”. Reasonably, the answer in
this case might be that you could learn a little (for example, the dagger might
mean the murderer had to get closer to the victim and so was more likely to
drop a hair). However, for the sake of simplicity we assume that this conditional
independence assumption holds.

Figure 1.12 shows the factor graph corresponding to our expanded model
with the new hair variable and a new factor representing this conditional dis-
tribution. Our conditional independence assumption has a simple graphical in-
terpretation, namely that there is no edge connecting the weapon node directly
to the factor representing the conditional distribution P (hair|murderer). The
only way to get from the weapon node to the hair node is via the murderer

node. We see that the missing edges in the factor graph capture independence
assumptions built into the model.

There is an alternative graphical representation of a model called a Bayesian
network or Bayes net that emphasises such independence assumptions, at the
cost of hiding information about the factors. It provides less detail about the
model than a factor graph, but gives a good ‘big picture’ view of which variables
directly and indirectly affect each other. See Panel 1.2 for more details.

42 CHAPTER 1. A MURDER MYSTERY

Given the factor graph of Figure 1.12, we can write down the joint distribu-
tion as the product of three terms, one for each factor in the factor graph:

P (murderer, weapon, hair) = P (murderer)P (weapon|murderer)

P (hair|murderer). (1.32)

Check for yourself that each term on the right of equation (1.32) corresponds
to one of the factor nodes in Figure 1.12.

1.4.1 Incremental inference

We want to compute the posterior distribution over murderer in this new model,
given values of weapon and hair. Given that we have the result from the
previous model, we’d like to make use of it – rather than start again from
scratch. To get our posterior distribution in the previous model, we conditioned

Panel 1.2 – Bayesian Networks

A Bayesian network (or Bayes net) is a different way of using a graph to represent
a probabilistic model. In a Bayes net, there are variable nodes corresponding to
each variable in the model, but there are no factor nodes. Parent variables of a
factor are connected directly to the child variable of the factor, using directed
edges (arrows). For example, the Bayes net corresponding to the factor graph
of our murder (Figure 1.12) looks like this:

weapon=revolver hair=true

murderer

As this figure shows, by hiding the factors, a Bayes net emphasises which vari-
ables there are and how they influence each other (directly or indirectly). Bayes
nets can be very useful in the early stages of model design when you want to
focus on what variables to include and which will affect each other, without yet
getting into details of precisely how they affect each other.
The disadvantage of using a Bayes net is that it is an incomplete specification
of a model – you also have to write down all the factor functions externally
to the graph and consider the two together as making up the model. For this
reason, we have chosen to use factor graphs in this book, since they provide a
stand-alone description of the model.

1.4. EXTENDING THE MODEL 43

on the value of weapon. To perform incremental inference in this new model,
we can write down Bayes’ rule but condition each term on the variable weapon:

P (murderer|hair, weapon) =
P (murderer|weapon)P (hair|murderer, weapon)

P (hair|weapon)
.

(1.33)
We can use exactly the same trick as we did back in equation (1.26) to drop the
denominator and replace the equals sign with a proportional sign ∝:

P (murderer|weapon, hair) ∝ P (murderer|weapon)P (hair|murderer, weapon).
(1.34)

Remembering that hair and weapon are conditionally indepedent given murderer,
we can use equation (1.31) and drop weapon from the last term:

P (murderer|weapon, hair) ∝ P (murderer|weapon)P (hair|murderer). (1.35)

Since we know the values of weapon and hair, we can write in these observations:

P (murderer|weapon = revolver, hair = true) ∝
P (murderer|weapon = revolver)P (hair = true|murderer).(1.36)

We can now compute the new posterior distribution for murderer. As before,
each term depends only on the value of murderer and the overall normaliza-
tion can be evaluated at the end. Substituting in the posterior we obtained in
subsection 1.2.3 and our new conditional probability from equation (1.30) gives:

P (murderer = Grey|weapon = rev., hair = true) ∝ 0.66× 0.50 = 0.33

P (murderer = Auburn|weapon = rev., hair = true) ∝ 0.34× 0.05 = 0.017.

The sum of these two numbers is 0.347, and dividing both numbers by their
sum we obtain the normalized posterior probabilities in the form

P (murderer = Grey|weapon = rev., hair = true) ' 0.95

P (murderer = Auburn|weapon = rev., hair = true) ' 0.05.

Taking account of all of the available evidence, the probability that Grey is the
murderer is now 95%.

As a recap, we can plot how the probability distribution over murderer

changed over the course of our murder investigation (Figure 1.13). Notice how
the probability of Grey being the murderer started out low and increased as each
new piece of evidence stacked against him. Similarly, notice how the probability
of Auburn being the murderer evolved in exactly the opposite direction, due
to the normalization constraint and the assumption that either one of the two
suspects was the murderer. We could seek further evidence, in the hope that this
would change the probability distribution to be even more confident (although,
of course, evidence implicating Auburn would have the opposite effect). Instead,
we will stop here – since 95% is greater than our threshold of 91% and so enough
for a conviction!

44 CHAPTER 1. A MURDER MYSTERY

Prior After observing weapon After observing hair
0

0.2

0.4

0.6

0.8

1

Grey

Auburn

Figure 1.13: The evolution of P (murderer) over the course of the murder in-
vestigation.

The model of the murder that we built up in this chapter contains various
prior and conditional probabilities that we have set by hand. For real applica-
tions, however, we will usually have little idea of how to set such probability
values and will instead need to learn them from data. In the next chapter we
will see how such unknown probabilities can be expressed as random variables,
whose values can be learned using the same probabilistic inference approach
that we just used to solve a murder.

Self assessment 1.4

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Continuing your chosen scenario from previous self assessments, choose
an additional variable that is affected by the conditioning variable. For
example, if the conditioning variable is ‘the traffic is bad’, then an affected
variable might be ‘my boss is late for work’. Draw a factor graph for a
larger model that includes this new variable, as well as the two previous
variables. Define a conditional probability table for the new factor in the
factor graph. Write down any conditional independence assumptions that
you have made in choosing this model, along with a sentence justifying
that choice of assumption.

2. Assume that the new variable in your factor graph is observed to have some
particular value of your choice (for example, ‘my boss is late for work’ is
observed to be true). Infer the posterior probability of the conditioning
variable (‘the traffic is bad’) taking into account both this new observation
and the observation of the other conditioned variable used in previous self
assessments (for example, the observation that I am late for work).

3. Write a program to print out 1,000 joint samples of all three variables
in your new model. Write down ahead of time how often you would

1.4. EXTENDING THE MODEL 45

expect to see each triplet of values and then verify that this approximately
matches the fraction of samples given by your program. Now change the
program to only print out those samples which are consistent with your
both observations from the previous question (for example, samples where
you are late for work AND your boss is late for work). What fraction of
these samples have each possible triplet of values now? How does this
compare to your answer to the previous question?

4. Consider some other variables that might influence the three variables in
your factor graph. For example, whether or not the traffic is bad might
depend on whether it is raining, or whether there is an event happening
nearby. Without writing down any conditional probabilities or specifying
any factors, draw a Bayes net showing how the new variables influence
your existing variables or each other. Each arrow in your Bayes net should
mean that ”the parent variable directly affects the child variable” or ”the
parent variable (partially) causes the child variable”. If possible, present
your Bayes network to someone else, and discuss it with them to see if they
understand (and agree with) the assumptions you are making in terms of
what variables to include in the model and what conditional independence
assumptions you have made.

Review of concepts introduced in this section

conditional independence Two variables A and B are conditionally indepen-
dent given a third variable C, if learning about A tells us nothing about B (and
vice-versa) in the situation where we know the value of C. Put another way, it
means that the value of A does not directly depend on the value of B, but only
indirectly via the value of C. If A is conditionally independent of B given C then
this can be exploited to simplify its conditional probability like so:

P (A|B, C) = P (A|C).

For example, the knowledge that a big sporting event is happening nearby (B)
might lead you to expect congestion on your commute (C), which might increase
your belief that you will be late for work (A). However, if you listen to the radio
and find out that there is no congestion (so now you know C), then the knowledge
of the sporting event (B) no longer influences your belief in how late you will be
(A). This also applies the other way around, so someone observing whether you
were late (A), who had also learned that there was no congestion (C) would be
none the wiser as to whether a sporting event was happening (B).

Bayesian network A graphical model where nodes correspond to variables in
the model and where edges show which variables directly influence each other.
Factors are not shown, but the parent variables in a factor are connected directly
to the child variable, using directed edges (arrows). See Panel 1.2.

46 CHAPTER 1. A MURDER MYSTERY

Chapter 2

Assessing People’s Skills

Throughout our lives, we are constantly assessing the skills and
abilities of those around us. Who should I hire? Who should play on
the team? Who can I ask for help? How can I best teach this person?
Taking all that we know about someone and working out what they
can and cannot do comes naturally to most of us. But how can we
use model-based machine learning to do this automatically?

In this chapter, we will develop our first model of some real-world data. We
will address the problem of assessing candidates for a job that requires certain
skills. The idea is that candidates will take a multiple-choice test and we will
use model-based machine learning to determine which skills each candidate has
(and with what probability) given their answers in the test. We can then use
this for tasks such as selecting a shortlist of candidates very likely to have a set
of essential skills.

Each question in a test requires certain skills
to answer. For a software development job, these
skills might be knowledge of the programming lan-
guage C# or the database query language SQL.
Some of the questions might require multiple skills
in order to be answered correctly. Figure 2.1 gives
some example questions which have been marked
with the skills required to answer them. Because
our model could be used for many different types of
job it must work with different tests and different
skills, as long as these skill annotations are pro-
vided. It is important that the system should only
use these annotations when presented with a new test – it must not require any
additional information, for example, sample answers from people with known
skills.

In order to assess which skills a candidate has, we will need to analyse their
answers to the test. Since we know the skills needed for each question, this may

47

48 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Software Development Skills Assessment

1. Which line of code creates a new Shape in C#?

a. Shape shape = new Shape();

b. Shape shape = Shape.new();

c. new Shape shape = Shape();

d. Shape shape = new Shape;

e. Shape shape = Shape();

2. Which SQL command is used to append a new row to a table in a database?

a. ADD

b. INSERT

c. UPDATE

d. SET

e. INPUT

3. After an SQL connection has been established using a SqlConnection object called “sql”, which of the
following will retrieve any rows in the “people” table with the name “bob”?

a. SqlCommand cmd = new SqlCommand("SELECT 'bob' FROM people", sql);

b. SqlCommand cmd = new SqlCommand("SELECT * FROM people WHERE name = 'bob'", sql);

c. SqlCommand cmd = new SqlCommand("SELECT * FROM people WHERE 'bob' IN name", sql);

d. SqlCommand cmd = sql.SqlCommand("SELECT * FROM people WHERE name = 'bob'");

e. SqlCommand cmd = sql.SqlCommand("SELECT 'bob' FROM people");

4. A developer wants to write a piece of software which

SQL

C#

C#, SQL

Figure 2.1: Part of a certification test used to assess software development skills. The questions have been
annotated with the skills needed to answer them.

appear straightforward: we just need to check whether they are getting all the
SQL questions right or all the C# questions wrong. But the real world is more
complicated than this – even if someone knows C# they may make a mistake
or misread a question; even if they do not know SQL they may guess the right
answer by pure luck. In some cases, the test questions may be badly written or
even outright wrong.

The situation is even more complicated for questions that need two (or more)
skills. If someone gets a question that needs two skills right, it suggests that they
are likely to have both skills. If they get it wrong, there are several possibilities:
they could have one skill or the other (but probably not both) or they could
have neither. Assessing which of these is the case requires looking at their

49

answers to other questions and trying to find a consistent set of skills that is
likely to give rise to all of the answers considered together. To do this kind of
complex reasoning automatically, we need to design a model of how a person
with particular skills answers a set of questions.

50 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.1 A model is a set of assumptions

When designing a model of some data, we must make assumptions about the
process that gave rise to the data. In fact, we can say that the model is the
set of assumptions and the set of assumptions is the model. The relationship
between a model and the assumptions that it represents is so important that it
is worth emphasising:

A model = A set of assumptions about the data

Selecting which assumptions to include in your model is a crucial part of model
design. Incorrect assumptions will lead to models that give inaccurate predic-
tions, due to these faulty assumptions. However, it is impossible to build a
model without making at least some assumptions.

As you have seen in chapter 1, in this book we will use factor graphs to
represent our models. As you progress through the book, you will learn how to
construct the factor graph that encodes a chosen set of assumptions. Similarly,
you will learn to look at a factor graph and work out which assumptions it
represents. You can think of a factor graph as being a precise mathematical
representation of a set of assumptions. For example, in chapter 1 we built up
a factor graph that represented a precise set of assumptions about a murder
mystery. For this application, we need to make assumptions about the process
of a candidate answering some test questions if they have a particular skill set.
This will define the relationship between a candidate’s underlying skills and
their test answers, which we can then invert to infer their skills from the test
answers.

When designing a factor graph, we start by choosing which variables we
want to have in the graph. At the very least, the graph must contain variables
representing the data we actually have (whether the candidate got each question
right) and any variables that we want to learn about (the skills). As we shall see,
it is often useful to introduce other, intermediate, variables. Having chosen the
variables, we can start adding factors to our graph to encode how these variables
affect each other in the question-answering process. It is usually helpful to start
with the variables we want to learn about (the skills) and work through the
process to finish with the variables that we can actually measure (whether the
candidate got the questions right).

So, starting with the skill variables, here is our first assumption:

1 A candidate has either mastered each skill or not.

Assumption 1 means that we can represent a candidate’s skill as a binary
(true/false) variable, which is true if the candidate has mastered the skill and
false if they haven’t. Variables which can take one of a fixed set of values
(like all the variables we have seen so far) are called discrete variables. Later
in the chapter, we will encounter continuous variables which can take any
value in a continuous range of values, such as any real number between 0 and

2.1. A MODEL IS A SET OF ASSUMPTIONS 51

1. As we shall see, continuous variables are useful for learning the probability
of events, amongst many other uses.

We next need to make an assumption about the prior probability of a can-
didate having each of these skills.

2 Before seeing any test results, it is equally likely that a candidate does or
doesn’t have any particular skill.

Assumption 2 means that the prior probability for each skill variable should be
set neutrally to 50%, which is Bernoulli(0.5). To keep our factor graph small,
we will start by considering a single candidate answering the three questions of
Figure 2.1.

The above two assumptions, applied to the csharp and sql skills needed for
these questions, give the following minimal factor graph:

csharp sql

Bernoulli(0.5) Bernoulli(0.5)

Figure 2.2: Factor graph showing priors for the binary skill variables csharp

and sql.

Remember that every factor graph represents a joint probability distribution
over the variables in the graph. The joint distribution for this factor graph is:

P (csharp, sql) = Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5). (2.1)

Note that there is a term in the joint probability for every factor (black square)
in the factor graph.

Continuing with the question-answering process, we must now make some
assumptions about how a candidate’s test answers relate to their skills. Suppose
they have all the skills for a question, we should still allow that they may get
it wrong some of the time. If we gave some SQL questions to a SQL expert,
how many should we expect them to get right? Probably not all of them, but
perhaps they would get 90% or so correct. We could check this assumption by
asking some real experts to do such a quiz and seeing what scores they get, but
for now we’ll assume that getting one in ten wrong is reasonable:

3 If a candidate has all of the skills needed for a question then they will
usually get the question right, except one time in ten they will make a
mistake.

For questions where the candidate lacks a necessary skill, we may assume that
they guess at random:

4 If a candidate doesn’t have all the skills needed for a question, they will
pick an answer at random. Because this is a multiple-choice exam with
five answers, there’s a one in five chance that they get the question right.

52 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Assumption 3 and Assumption 4 tell us how to extend our factor graph to
model the first two questions of Figure 2.1. We need to add in variables for each
question that are true if the candidate got the question right and false if they
got it wrong. Let’s call these variables isCorrect1 for the first question and
isCorrect2 for the second question. Based on our assumptions, if csharp is
true, we expect isCorrect1 to be true unless the candidate makes a mistake
(since the first question only needs the csharp skill). Since we assume that
mistakes happen only one time in ten, the probability that isCorrect1 is true
in this case is 90%. If csharp is false, then we assume that the candidate will
only get the question right by one time in five, which is 20%. This gives us the
following conditional probability table:

csharp isCorrect1=true isCorrect1=false

true 0.900 0.100

false 0.200 0.800

Table 2.1: Conditional probability table showing the probability of each value
of isCorrect1 conditioned on each of the two values of csharp.

We will call the factor representing this conditional probability table AddNoise
since the output is a ‘noisy’ version of the input. Because our assumptions apply
equally to all skills, we can use the same factor to relate sql to isCorrect2.
This gives the following factor graph for the first two questions:

csharp sql

isCorrect1 isCorrect2

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

Figure 2.3: Factor graph for the first two questions in our test.

We can write down the joint probability distribution represented by this
graph by including the two new terms for the AddNoise factors:

P (csharp, sql, isCorrect1, isCorrect2) = (2.2)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql).

Modelling the third question is more complicated since this question requires
both the csharp and sql skills. Assumption 3 and Assumption 4 refer to

2.1. A MODEL IS A SET OF ASSUMPTIONS 53

whether a candidate has “all the skills needed for a question”. So for question 3,
we need to include a new intermediate variable to represent whether the can-
didate has both the csharp and sql skills. We will call this binary variable
hasSkills, which we want to be true if the candidate has both skills needed
for the question and false otherwise. We achieve this by putting in an And
factor connecting the two skill variables to the hasSkills variable. The And
factor is defined so that And(C|A, B) is 1 if C is equal to A AND B and 0 other-
wise. In other words, it forces the child variable C to be equal to (A AND B). A
factor like And , where the child has a unique value given the parents, is called
a deterministic factor (see Panel 2.1).

Here’s a partial factor graph showing how the And factor can be used to
make the hasSkills variable that we need:

Panel 2.1 – Deterministic factors

When building a model, we often want to include a variable which is a fixed
function of some other variables in the model. For example, we may want a
binary variable to be true if all of some other binary variables are true (AND)
or if any of them are true (OR). For a continuous variable, we may want it to
be the sum or product of some other continuous variables.
We can achieve this by putting a deterministic factor in our factor graph. The
conditional probability distribution for a deterministic factor always has a value
of either 1 or 0. It is 1 if the child variable is equal to the desired function of
the parent variables and 0 otherwise. For example, if we want to add a variable
C which is to be equal to A AND B, we can add a deterministic factor whose
conditional probability distribution is:

A B C=false C=true

false false 1.000 0.000

false true 1.000 0.000

true false 1.000 0.000

true true 0.000 1.000

Notice that whenever C is equal to A AND B, the conditional probability is 1
and it is 0 elsewhere. Since the overall joint probability includes this factor as
one of its terms, the probability of any configuration of variables where C is not
equal to A AND B must be zero. So the deterministic factor acts as a constraint
that ensures C=(A AND B) is always true.
Throughout this book you will see that deterministic factors play a vital role in
a wide variety of models.

54 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

And

Figure 2.4: The And factor is a deterministic factor which constrains hasSkills
to be true if csharp and sql are both true, and to be false in all other cases.

The joint probability distribution for this factor graph is:

P (csharp, sql, hasSkills) = (2.3)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5) And(hasSkills|csharp, sql).

The new And factor means that we now have a new And term in the joint
probability distribution.

Now we can put everything together to build a factor graph for all three
questions. We just need to connect hasSkills to our isCorrect3 variable,
once again using an AddNoise factor:

csharp sql

isCorrect1 isCorrect2

hasSkills

isCorrect3

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.5: Factor graph for the three multiple choice questions of Figure 2.1.

The joint probability distribution for this factor graph is quite long because
we now have a total of six factor nodes, meaning that it contains six terms:

P (csharp, sql, hasSkills, isCorrect1, isCorrect2, isCorrect3) = (2.4)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql)

And(hasSkills|csharp, sql) AddNoise(isCorrect3|hasSkills).

2.1. A MODEL IS A SET OF ASSUMPTIONS 55

Because joint probability distributions like this one are big and awkward to work
with, it is usually easier to use factor graphs as a more readable and manageable
way to express a model.

It is essential that any model contains variables corresponding to the ob-
served data, and that these variables are of the same type. This allows the
data to be attached to the model by fixing these variables to the correspond-
ing observed data values. An inference calculation can then be used to find
the marginal distributions for any other (unobserved) variable in the model.
For our model, we need to ensure that we can attach our test results data
to the model, which consists of a yes/no result for each question depending
on whether the candidate got that question right. We can indeed attach this
data to our model, because we have binary variables (isCorrect1, isCorrect2,
isCorrect3) which we can set to be true if the candidate got the question right
and false otherwise.

There is one more assumption being made in this model that has not yet
been mentioned. In fact, it is normally one of the biggest assumptions made by
any model! It is the assumed scope of the model: that is, the assumption that
only the variables included in the model are relevant. For example, our model
makes no mention of the mental state of the candidate (tired, stressed), or of
the conditions in which they were performing the test, or whether it is possible
that cheating was taking place, or whether the candidate even understands the
language the questions are written in. By excluding these variables from our
model, we have made the strong assumption that they are independent from
(do not affect) the candidate’s answers.

Poor assumptions about scope often lead to unsatisfactory results of the
inference process, such as reduced accuracy in making predictions. The scope
of a model is an assumption that should be critically assessed during the model
design process, if only to identify aspects of the problem that are being ignored.
So to be explicit, the last assumption for our learning skills model is:

5 Whether the candidate gets a question right depends only on what skills
that candidate has and not on anything else.

We will not explicitly call out this assumption in future models, but it is good
practice to consider carefully what variables are being ignored, whenever you
are designing or using a model.

2.1.1 Questioning our assumptions

Having constructed the factor graph, let us pause for a moment and review the
assumptions we have made so far. They are all shown together in Table 2.2.

56 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

1 Each candidate has either mastered each skill or not.

2 Before seeing any test results, it is equally likely that each candidate
does or doesn’t have any particular skill.

3 If a candidate has all of the skills needed for a question then they
will get the question right, except one time in ten they will make a
mistake.

4 If a candidate doesn’t have all the skills needed for a question, they
will pick an answer at random. Because this is a multiple-choice
exam with five answers, there’s a one in five chance that they get the
question right.

5 Whether the candidate gets a question right depends only on what
skills that candidate has and not on anything else.

Table 2.2: The five assumptions encoded in our model.

It is very important to review all modelling assumptions carefully to ensure
that they are reasonable. For example, Assumption 1 is a simplifying assump-
tion which reduces the degree of skill that a candidate has into a simple yes/no
variable. It is usual to have to make such simplifying assumptions, which are
not exactly incorrect but which make the model less precise. Simplifying as-
sumptions can be made as long as you keep in mind that these may reduce the
accuracy of the results. Assumption 2 seems apparently safe since it is just
assuming ignorance. However, it is also assuming that each of the skill variables
are independent, that is, knowing that someone has one particular skill doesn’t
tell you anything about whether they have any of the other skills. If some of
the skills are related in some way, this may well not be the case. To keep the
model simple, we will work with this assumption for now, but bear it in mind
as a candidate for refinement later on. Assumption 3 and Assumption 4 are
more subtle: is it really true that if the candidate has, say, two out of three skills
needed for a question, then they are reduced to guesswork? We will continue
to use these assumptions for now – later in the chapter we will show how to
diagnose whether our model assumptions are causing problems and see how to
revise them. Assumption 5 , that no other variables are relevant, is reasonable
assuming that there is a conscientious examiner administering the test. A good
examiner will make sure that a candidate’s answers genuinely reflect their skills
and are not affected by external conditions or cheating.

Having reviewed our assumptions by eye, we can now try the model out to
ensure that the assumptions continue to make sense when applied to realistic
example data.

Self assessment 2.1

2.1. A MODEL IS A SET OF ASSUMPTIONS 57

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Write down the conditional probability table for a deterministic factor
which represents the OR function. The child variable C should be true if
either of the parent variables A and B are true. Panel 2.1 should help.

2. Write down all the independence and conditional independence assump-
tions that you can find in Figure 2.5. For each assumption ask yourself
whether it is reasonable – as discussed in chapter 1, for independence as-
sumptions you need to ask yourself the question “does learning about A
tell me anything about B?” and for conditional independence assumptions
you need to ask “if I know X, does learning about A tell me anything about
B?”.

3. As mentioned above, there may be many other variables that affect the
test outcomes (e.g. cheating, candidate’s state of mind). Draw a Bayesian
network that includes one or more of these additional variables, as well as
all the variables in our current model. Your Bayes net should only include
edges between variables that directly affect each other. It may be helpful
to introduce intermediate variables as well. If possible, present your Bayes
net to someone else and discuss whether they agree with the assumptions
you have made.

Review of concepts introduced in this section

discrete variables Variables which can take one of a fixed set of values. For
example, a binary variable can take only two values true or false.

continuous variables Variables which can take any value in a continuous
range of values, for example, any real number between 0 and 1.

deterministic factor A factor defining a conditional probability which is
always either 0 or 1. This means that the value of child variable can always
be uniquely determined (i.e. computed) given the value of the parent variables.
For example a factor representing the AND operation is a deterministic factor.
See Panel 2.1 for more details.

58 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.2 Testing out the model

Having constructed a model, the first thing to do is to test it out with some sim-
ple example data to check that its behaviour is reasonable. Suppose a candidate
knows C# but not SQL – we would expect them to get the first question right
and the other two questions wrong. So let’s test the model out for this case and
see what skills it infers for that pattern of answers. For convenience, we’ll use
isCorrect to refer to the array [isCorrect1,isCorrect2,isCorrect3] and so
we will consider the case where isCorrect is [true,false,false].

We want to infer the probability that the candidate has the csharp and sql

skills, given this particular set of isCorrect values. This is an example of an
inference query which is defined by the variables we want to infer (csharp,
sql) and the variables we are conditioning on (isCorrect) along with their
observed values. Because this example is quite small, we can work out the
answer to this inference query by hand.

2.2.1 Doing inference by hand
Inference

Inference deep-dive
In this optional section, we perform inference in our model manually by marginal-
ising the joint distribution. If you want to focus on modelling, feel free to skip
this section.

As we saw in chapter 1, we can perform inference by marginalising the joint
distribution (summing it over all the variables except the one we are interested
in) while fixing the values of any observed variables. For the three-question
factor graph, we wrote down the joint probability distribution in equation (2.4).
Here it is again:

P (csharp, sql, hasSkills, isCorrect) = (2.5)

Bernoulli(csharp; 0.5) Bernoulli(sql; 0.5)

AddNoise(isCorrect1|csharp) AddNoise(isCorrect2|sql)

And(hasSkills|csharp, sql) AddNoise(isCorrect3|hasSkills).

Before we start this inference calculation, we need to show how to compute
a product of distributions. Suppose for some variable x, we know that:

P (x) ∝ Bernoulli(x; 0.8) Bernoulli(x; 0.4). (2.6)

This may look odd since we normally only associate one distribution with a vari-
able but, as we’ll see, products of distributions arise frequently when performing
inference. Evaluating this expression for the two values of x gives:

P (x) ∝

{
0.8× 0.4 = 0.32 if x = true

0.2× 0.6 = 0.12 if x = false.
(2.7)

2.2. TESTING OUT THE MODEL 59

Since we know that P (x = true) and P (x = false) must add up to one, we
can divide these values by 0.32 + 0.12 = 0.44 to get:

P (x) =

{
0.727 if x = true

0.273 if x = false
= Bernoulli(x; 0.727). (2.8)

This calculation may feel familiar to you – it is very similar to the inference
calculations that we performed in chapter 1.

In general, if want to multiply two Bernoulli distributions, we can use the
rule that:

Bernoulli(x; a) Bernoulli(x; b) ∝ Bernoulli

(
x ;

ab

ab+ (1− a)(1− b)

)
. (2.9)

If, say, the second distribution is uniform (b=0.5), the result of the product is
Bernoulli(x; a). In other words, the distribution Bernoulli(x; a) is unchanged by
multiplying by a uniform distribution. In general, multiplying any distribution
by the uniform distribution leaves it unchanged.

Armed with the ability to multiply distributions, we can now compute the
probability that our example candidate has the csharp skill. The precise prob-
ability we want to compute is P (csharp|isCorrect = [T, F, F]), where we have
abbreviated true to T and false to F. As before, we can compute this by
marginalising the joint distribution and fixing the observed values:

P (csharp|isCorrect = [T, F, F]) ∝ (2.10)∑
sql

∑
hasSkills

P (csharp, sql, hasSkills, isCorrect = [T, F, F]).

As we saw in chapter 1, we use the proportional sign ∝ because we do not care
about the scaling of the right hand side, only the ratio of its value when csharp

is true to the value when csharp is false.

Now we put in the full expression for the joint probability from (2.5) and fix
the values of all the observed variables. We can ignore the Bernoulli(0.5) terms
since, as we just learned, multiplying a distribution by a uniform distribution
leaves it unchanged. So the right hand side of (2.10) becomes

∝
∑
sql

∑
hasSkills

AddNoise(isCorrect1 = T|csharp) (2.11)

AddNoise(isCorrect2 = F|sql)

And(hasSkills|csharp, sql) AddNoise(isCorrect3 = F|hasSkills).

Terms inside of each summation
∑

that do not mention the variable being
summed over can be moved outside of the summation, because they have the
same value for each term being summed. You can also think of this as moving

60 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

the summation signs in towards the right:

∝ AddNoise(isCorrect1 = T|csharp) (2.12)∑
sql

AddNoise(isCorrect2 = F|sql)

∑
hasSkills

And(hasSkills|csharp, sql) AddNoise(isCorrect3 = F|hasSkills).

If you look at the first term here, you’ll see that it is a function of csharp
only, since isCorrect1 is observed to be true. When csharp is true, this term
has the value 0.9. When csharp is false, this term has the value 0.2. Since we
only care about the relative sizes of these two numbers, we can replace this term
by a Bernoulli term where the probability of true is 0.9

0.9+0.2 = 0.818 and the
probability of false is therefore 1-0.818=0.182. Note that this has preserved
the true/false ratio 0.818/0.182 = 0.9/0.2.

Similarly the second AddNoise term has value 0.1 when sql is true and the
value 0.8 when sql is false, so can be replaced by a Bernoulli term where the
probability of true is 0.1

0.1+0.8 = 0.111. The final AddNoise term can also be
replaced, giving:

∝ Bernoulli(csharp; 0.818) (2.13)∑
sql

Bernoulli(sql; 0.111)

∑
hasSkills

And(hasSkills|csharp, sql) Bernoulli(hasSkills; 0.111).

For the deterministic And factor, we need to consider the four cases where the
factor is not zero (which we saw in Panel 2.1) and plug in the Bernoulli(0.111)
distributions for sql and hasSkills in each case:

csharp sql hasSkills Bern(sql|0.111) Bern(hasSkills|0.111) Product

false false false 10.111 10.111 0.790

false true false 0.111 10.111 0.099

true false false 10.111 10.111 0.790

true true true 0.111 0.111 0.012

Table 2.3: Evaluation of the last three terms in (2.13). Each row of the table
corresponds to one of the four cases where the And factor is 1 (rather than 0).
The first three columns give the values of csharp, sql and hasSkills, which
is just the truth table for AND. The next two columns give the corresponding
values of the Bernoulli distributions for sql and hasSkills and the final column
multiplies these together.

Looking at Table 2.3, we can see that when csharp is true, either both sql

and hasSkills are false (with probability 0.790) or both sql and hasSkills

2.2. TESTING OUT THE MODEL 61

are true (with probability 0.012). The sum of these is 0.802. When csharp is
false, the corresponding sum is 0.790 + 0.099 = 0.889. So we can replace the
last three terms by a Bernoulli term with parameter 0.802

0.802+0.889 = 0.474.

∝ Bernoulli(csharp; 0.818) Bernoulli(csharp; 0.474) (2.14)

Now we have a product of Bernoulli distributions, so we can use (2.9) to multiply
them together. When csharp is true, this product has value 0.818 × 0.474 =
0.388. When csharp is false, the value is (1 − 0.818) × (1 − 0.474) = 0.096.
Therefore, the product of these two distributions is a Bernoulli whose parameter
is 0.388

0.388+0.096 :

= Bernoulli(csharp; 0.802) (2.15)

So we have calculated that the posterior probability that our candidate has the
csharp skill to be 80.2%. If we work through a similar calculation for the sql

skill, we find the posterior probability is 3.4%. Together these probabilities say
that the candidate is likely to know C# but is unlikely to know SQL, which
seems like a very reasonable inference given that the candidate only got the C#
question right.

2.2.2 Doing inference by passing messages on the graph
Inference

Inference deep-dive
Doing inference calculations manually takes a long time and it is easy to make
mistakes. Instead, we can do the same calculation mechanically by using a mes-
sage passing algorithm. This works by passing messages along the edges of
the factor graph, where a message is a probability distribution over the variable
that the edge is connected to. We will see that using a message passing algo-
rithm lets us do the inference calculations automatically – a huge advantage of
the model-based approach!

In this optional section, we show how inference can be performed using a
message passing algorithm called belief propagation. If you want to focus on
modelling, feel free to skip this section. Let us redo the inference calculation
for the csharp skill using message passing – we’ll describe the message passing
process for this example first, and then look at the general form later on. The
first step in the manual calculation was to fix the values of the observed variables.
Using message passing, this corresponds to each observed variable sending out
a message which is a point mass distribution at the observed value. In our case,
each isCorrect variable sends the point mass Bernoulli(0) if it is observed to
be false or the point mass Bernoulli(1) if it is observed to be true. This means
that the three messages sent are as shown in Figure 2.6.

62 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Bern(1) Bern(0) Bern(0)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.6: The messages sent from the observed variable nodes, which are
shown shaded and labelled with their observed values. The message on any edge
is a distribution over the variable that the edge is connected to. For example,
the left hand Bern(1) is short for Bernoulli(isCorrect1; 1).

These point mass messages then arrive at the AddNoise factor nodes. The
outgoing messages at each factor node can be computed separately as follows:

• The message up from the first AddNoise factor to csharp can be computed
by writing AddNoise(isCorrect1 = T|csharp) as a Bernoulli distribution
over csharp. As we saw in the last section, the parameter of the Bernoulli
is p = 0.9

0.9+0.2 = 0.818, so the upward message is Bernoulli(0.818).

• The message up from the second AddNoise factor to sql can be com-
puted by writing AddNoise(isCorrect2 = F|sql) as a Bernoulli distribu-
tion over sql. The parameter of the Bernoulli is p = 0.1

0.1+0.8 = 0.111, so
the upward message is Bernoulli(0.111).

• The message up from the third AddNoise factor to hasSkills is the same
as the second message, since it is computed for the same factor with
the same incoming message. Hence, the third upward message is also
Bernoulli(0.111).

2.2. TESTING OUT THE MODEL 63

Bern(1) Bern(0) Bern(0)

Bern(0.818) Bern(0.111)

Bern(0.111)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.7: Outgoing messages from the AddNoise factor nodes.

Note that these three messages are exactly the three Bernoulli distributions we
saw in in (2.13). Rather than working on the entire joint distribution, we have
broken down the calculation into simple, repeatable message computations at
the nodes in the factor graph.

The messages down from the Bernoulli(0.5) prior factors are just the prior
distributions themselves:

Bern(1) Bern(0) Bern(0)

Bern(0.818) Bern(0.111)

Bern(0.111)

Bern(0.5) Bern(0.5)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.8: Messages from the Bernoulli prior factor nodes.

The outgoing message for any variable node is the product of the incoming
messages on the other edges connected to that node. For the sql variable node
we now have incoming messages on two edges, which means we can compute the

64 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

outgoing message towards the And factor. This is Bernoulli(0.111) since the
upward message is unchanged by multiplying by the uniform downward message
Bernoulli(0.5). The hasSkills variable node is even simpler: since there is only
one incoming message, the outgoing message is just a copy of it.

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.9: Messages out of the sql and hasSkills variable nodes.

Finally, we can compute the outgoing message from the And factor to the
csharp variable. This is computed by multiplying the incoming messages by
the factor function and summing over all variables other than the one being sent
to (so we sum over sql and hasSkills):

∑
sql

∑
hasSkills

And(hasSkills|csharp, sql) (2.16)

Bernoulli(sql; 0.111) Bernoulli(hasSkills; 0.111).

The summation gives the message Bernoulli(0.474), as we saw in equation (2.14).

2.2. TESTING OUT THE MODEL 65

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.474)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.10: The final message toward the csharp variable node.

We now have all three incoming messages at the csharp variable node, which
means we are ready to compute its posterior marginal. This is achieved by
multiplying together the three messages – this is the calculation we performed
in equation (2.14) and hence gives the same result Bernoulli(0.802) or 80.2%.

To compute the marginal for sql, we can re-use most of the messages we
just calculated and so only need to compute two additional messages (shown in
Figure 2.11). The first message, from csharp to the And factor, is the product
of Bernoulli(0.818) and the uniform distribution Bernoulli(0.5), so the result is
also Bernoulli(0.818).

The second message is from the And factor to sql. Again, we compute
it by multiplying the incoming messages by the factor function and summing
over all variables other than the one being sent to (so we sum over csharp and
hasSkills):

∑
csharp

∑
hasSkills

And(hasSkills|csharp, sql) (2.17)

Bernoulli(csharp; 0.818) Bernoulli(hasSkills; 0.111).

The summation gives the message Bernoulli(0.221), so the two new messages
we have computed are those shown in Figure 2.11.

66 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Bern(1) Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.818)

Bern(0.221)

isCorrect1=T isCorrect2=F isCorrect3=F

csharp sql

hasSkills

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

Figure 2.11: Additional messages needed to compute the marginal for the sql

variable.

Multiplying this message into sql with the upward message from the AddNoise
factor gives Bernoulli(0.111)×Bernoulli(0.221) ∝ Bernoulli(0.034) or 3.4%, the
same result as before. Note that again we have ignored the uniform Bernoulli(0.5)
message from the prior, since multiplying by a uniform distribution has no effect.

The message passing procedure we just saw arises from applying an algo-
rithm called belief propagation [Pearl, 1988; Lauritzen and Spiegelhalter,
1988]. In belief propagation, messages are computed in one of three ways, de-
pending on whether the message is coming from a factor node, an observed
variable node or an unobserved variable node. The full algorithm is given in
algorithm 2.1. The derivation of this algorithm can be found in Bishop [2006].

2.2.3 Using belief propagation to test out the model

The belief propagation algorithm allows us to do inference calculations entirely
automatically for a given factor graph. This means that it is possible to com-
pletely automate the process of answering an inference query without writing
any code or doing any hand calculation!

Using belief propagation, we can test out our model fully by automatically
inferring the marginal distributions for the skills for every possible configuration
of correct and incorrect answers. The results of doing this are shown in Table 2.4.

2.2. TESTING OUT THE MODEL 67

IsCorrect1 IsCorrect2 IsCorrect3 P(csharp) P(sql)

0.101 0.101

0.802 0.034

0.034 0.802

0.561 0.561

0.148 0.148

0.862 0.326

0.326 0.862

0.946 0.946

Table 2.4: The posterior probabilities for the csharp and sql variables for all
possible configurations of isCorrect. As before, the blue bars give a visual
representation of the inferred probabilities.

Inspecting this table, we can see that the results appear to be sensible – the
probability of having the csharp skill is generally higher when the candidate got
the first question correct and similarly the probability of having the sql skill is
generally higher when the candidate got the second question correct. Also, both

Algorithm 2.1: Belief Propagation

Input: factor graph, list of target variables to compute marginal
distributions for.

Output: marginal distributions for target variables.

repeat
foreach node in the factor graph do

foreach edge connected to the node do
If all needed incoming messages are available send the
appropriate outgoing message below:
- Variable node message: the product of all messages received
on the other edges;
- Factor node message: the product of all messages received on
the other edges, multiplied by the factor function and summed
over all variables except the one being sent to;
- Observed node message: a point mass at the observed value;

end

end

until target variables have received incoming messages on all edges
Compute marginal distributions as the product of all incoming messages
at each target variable node.

68 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

probabilities are higher when the third question is correct rather than incorrect.
Interestingly, the probability of having the sql skill is actually lower when

only the first question is correct, than where the candidate got all the questions
wrong (first and second rows of Table 2.4). This makes sense because getting the
first question right means the candidate probably has the csharp skill, which
makes it even more likely that the explanation for getting the third question
wrong is that they didn’t have the sql skill. This is an example of the kind of
subtle reasoning which model-based machine learning can achieve, which can
give it an advantage over simpler approaches. For example, if we just used
the number of questions needing a particular skill that a person got right as
an indicator of that skill, we would be ignoring potentially useful information
coming from the other questions. In contrast, using a suitable model, we have
exploited the fact that getting a csharp question right can actually decrease the
probability of having the sql skill.

Self assessment 2.2

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Compute the product of the following pairs of Bernoulli distributions

(a) Bernoulli(x; 0.3)× Bernoulli(x; 0.9)

(b) Bernoulli(x; 0.5)× Bernoulli(x; 0.2)

(c) Bernoulli(x; 0.5)× Bernoulli(x; 0.3)

(d) Bernoulli(x; 1.0)× Bernoulli(x; 0.2)

(e) Bernoulli(x; 1.0)× Bernoulli(x; 0.3)

Why can we not compute Bernoulli(x; 1.0)× Bernoulli(x; 0.0)?

2. Write a program (or create a spreadsheet) to print out pairs of samples
from two Bernoulli distributions with different parameters a and b. Now
filter the output of the program to only show samples pairs which have the
same value (i.e. where both samples are true or where both are false).
Print out the fraction of these samples which are true. This process
corresponds to multiplying the two Bernoulli distributions together and
so the resulting fraction should be close to the value given by equation
(2.9).

Use your program to (approximately) verify your answers to the previous
question. What does your program do when a = 0.0 and b = 1.0?

3. Manually compute the posterior probability for the sql skill, as we did
for the csharp skill in subsection 2.2.1, and show that it comes to 3.4%.

4. Build this model in Infer.NET and reproduce the results in Table 2.4.
For examples of how to construct a conditional probability table, it may
be useful to refer to the wet grass/sprinkler/rain example in this thread.

https://social.microsoft.com/Forums/en-US/dcffcf8d-fb15-4236-98fd-9d4a5b19e03a/example-of-bayesian-network-migrated-from-communityresearchmicrosoftcom?forum=infer.net

2.2. TESTING OUT THE MODEL 69

You will also need to use the Infer.NET & operator for the And factor.
This exercise demonstrates how inference calculations can be performed
completely automatically given a model definition.

Review of concepts introduced in this section

inference query A query which defines an inference calculation to be done
on a probabilistic model. It consists of the set of variables whose values that
we know (along with those values) and another set of variables that we wish to
infer posterior distributions for. An example of an inference query is if we may
know that the variable weapon takes the value revolver and wish to infer the
posterior distribution over the variable murderer.

product of distributions An operation which multiplies two (or more)
probability distributions and then normalizes the result to sum to 1, giving
a new probability distribution. This operation should not be confused with
multiplying two different random variables together (which may happen using a
deterministic factor in a model). Instead, a product of distributions involves two
distributions over the same random variable. Products of distributions are used
frequently during inference to combine multiple pieces of uncertain information
about a particular variable which have come from different sources.

message passing algorithm An algorithm for doing inference calculations
by passing messages over the edges of a graphical model, such as a factor graph.
The messages are probability distributions over the variable that the edge is
connected to. Belief propagation is a commonly used message passing algorithm.

belief propagation A message passing algorithm for computing posterior
marginal distributions over variables in a factor graph. Belief propagation uses
two different messages computations, one for messages from factors to variables
and one for messages from variables to factors. Observed variables send point
mass messages. See algorithm 2.1.

70 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.3 Loopiness

Let’s now extend our model slightly by adding a fourth question which needs
both skills. This new factor graph is shown in Figure 2.12, where we have added
new isCorrect4 and hasSkills4 variables for the new question. Surely we can
also do inference in this, very slightly larger, graph using belief propagation? In
fact, we cannot.

Loops can be challenging.

The problem is that belief propa-
gation can only send a message out
of an (unobserved) node after we have
received messages on all other edges
of that node (algorithm 2.1). Given
this constraint, we can only send all
the messages in a graph if there are no
loops, where a loop is a path through
the graph which starts and finishes
at the same node (without using the
same edge twice). If the graph has a
loop, then we cannot send any of the
messages along the edges of the loop
because that will always require one
of the other messages in the loop to
have been computed first.

If you look back at the old three-question factor graph (Figure 2.5) you’ll
see that it has no loops (a graph with no loops is called a tree) and so belief
propagation worked without problems. However, our new graph does have a

csharp sql

isCorrect1 isCorrect2

hasSkills3

isCorrect3

hasSkills4

isCorrect4

Bernoulli(0.5) Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

Figure 2.12: Factor graph for a four-question test. This graph contains a loop
(shown in red) which means that we cannot apply belief propagation.

2.3. LOOPINESS 71

loop, which is marked in red in Figure 2.12. To do inference in such a loopy
graph, we need to look beyond standard belief propagation.

To perform inference in loopy graphs, we need to get rid of the loops some-
how. There are various methods to do this (see Panel 2.2) but they can all
become too slow to use when dealing with large factor graphs. In most real
applications the graphs are very large but, at the same time, inference needs
to be performed quickly. The result is that such exact inference methods are
often too slow to be useful.

The alternative is to look at methods that compute an approximation to the
required marginal distributions, but which can do so in much less time. In this
book, we will focus on such approximate inference approaches, since they
have proven to be remarkably useful in a wide range of applications. For this
particular loopy graph, we will introduce an approximate inference algorithm
called loopy belief propagation.

2.3.1 Loopy belief propagation
Inference

Inference deep-dive
In this optional section, we define the loopy belief propagation algorithm and use
it to perform inference in our loopy model. If you want to focus on modelling,
feel free to skip this section. Loopy belief propagation [Frey and MacKay, 1998]
is identical to belief propagation until we come to a message that we cannot
compute because it is in a loop. At that point, the loopy belief propagation
algorithm computes the message anyway using a suitable initial value for any
messages which are not yet available.

So, in loopy belief propagation, when we wish to compute a message m
that depends on other messages which are not yet computed, we use a special
initial message value for the unavailable messages. This initial value is usually
the uniform distribution (such as Bernoulli(0.5)) but in some cases it may be
preferable to use some other user-supplied distribution. These initial message
values allows us to break the loop and compute m. Once we have computed m,
we will be able to compute other messages around the loop and eventually we
get back to the original node. At this point, all the incoming messages needed to
compute m will have been computed, so we can recompute m using these values
instead of the initial ones. But because m has changed in value, we can then go
around the loop computing all the messages again. Which will bring us back to
recomputing m, and so on. After a number of iterations around the loop, this
procedure often leads to the value of message m not changing – we say that it
has converged. At this point, we can stop sending any further messages, since
there will be no further changes to the computed marginal distributions.

The complete loopy belief propagation algorithm is given as algorithm 2.2 –
it requires as input a message-passing schedule, which we will discuss shortly.
Loopy belief propagation is not guaranteed to give the exactly correct result
but it often gives results that are very close. Unlike exact inference methods,
however, loopy belief propagation is still fast when applied to large models,
which is a very desirable property in real applications.

72 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Panel 2.2 – Exact Inference in Loopy Graphs

To perform inference calculations exactly in loopy graphs, we need to find a way
to remove the loops and so convert the graph into a tree. Once we have a tree,
we can run belief propagation as normal. There are two common approaches
for removing loops from a loopy graph:

1. Remove loops by merging variables together

In our example, we could replace the variables csharp and sql by a single
variable with four states FF, TF, FT, TT . We would also need to modify
and in some cases combine all the factors connected to either variable.
The resulting factor graph would no longer contain a loop. This approach
is the basis of the junction tree algorithm Lauritzen and Spiegelhalter
[1988] which merges variables to create a junction tree, on which belief
propagation is applied. The junction tree algorithm was used successfully
in many early machine learning applications, but it does become unusably
slow to run when a large number of variables need to be merged together,
as is often the case with today’s applications. This is because the number
of states in the merged node is the product of the number of states of the
individual variables. This product quickly becomes unmanageably large
as more variables are merged together.

2. Remove loops by observing a variable in the loop

If we observe csharp to be true, then the outward messages from the
csharp variable can be sent, because they are just point masses. This has
the effect of cutting the loop. The downside is that to get any marginal
you now have to run inference twice, once with csharp set to true and
once with it set to false and then combine the two answers. For graphs
with many loops, we would need to observe multiple variables to ensure
all loops were cut. This is the basis of a method called cutset condition-
ing Pearl [1988]; Suermondt and Cooper [1990], where the cutset is the set
of variables that are observed (conditioned on) in order to cut all loops.
Like the junction tree algorithm, cutset conditioning can be unusably slow
when the cutset is large since we need to re-run inference for every con-
figuration of the variables in the cutset. The number of configurations of
the cutset is again the product of the number of states of the individual
variables, which quickly becomes unmanageably large as the number of
variables in the cutset increases.

Choosing a message-passing schedule

An important consequence of using loopy belief propagation is that we now need
to provide a message-passing schedule, that is, we need to say the order in
which messages will be calculated. This is in contrast to belief propagation

2.3. LOOPINESS 73

Algorithm 2.2: Loopy Belief Propagation

Input: factor graph, list of target variables to compute marginals for,
message-passing schedule, initial message values (optional).

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Variable node message: the product of all messages received on
the other edges;
- Factor node message: the product of all messages received on
the other edges, multiplied by the factor function and summed
over all variables except the one being sent to;
- Observed node message: a point mass at the observed value;

end

until all messages have converged
Compute marginal distributions as the product of all incoming messages
at each target variable node.

where the schedule is fixed, since a message can be sent only at the point when
all the incoming messages it depends on are received. A schedule for loopy belief
propagation needs to be iterative, in that parts of it will have to be repeated
until message passing has converged.

The choice of schedule can have a significant impact on the accuracy of
inference and on the rate of convergence. Some guidelines for choosing a good
schedule are:

• Message computations should use as few initial message values as possible.
In other words, the schedule should be as close to the belief propagation
schedule as possible and initial message values should only be used where
absolutely necessary to break loops. Following this guideline will tend to
make the converged marginal distributions more accurate.

• Messages should be sent sequentially around loops within each iteration.
Following this guideline will make inference converge faster – if instead it
takes two iterations to send a message round any loop, then the inference
algorithm will tend to take twice as long to converge.

There are other factors that may influence the choice of schedule: for exam-
ple, when running inference on a distributed cluster you may want to minimize
the number of messages that pass between cluster nodes. Manually designing
a message-passing schedule in a complex graph can be challenging – thank-
fully, there are automatic scheduling algorithms available that can produce good
schedules for a large range of factor graphs, such as those used in Infer.NET
[Minka et al., 2014].

74 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.3.2 Applying loopy belief propagation to our model

Let’s now apply loopy belief propagation to solve our model of Figure 2.12, as-
suming that the candidate also gets the fourth question wrong (so that isCorrect4
is false). We’ll start by laying out the model a bit differently to make the loop
really clear – see Figure 2.13a. Now we need to pick a message-passing schedule
for this model. A schedule which follows the guidelines above is:

1. Send messages towards the loop from the isCorrect observed nodes and
the Bernoulli priors (Figure 2.13b);

2. Send messages clockwise around the loop until convergence (Figure 2.13c).
We need to use one initial message to break the loop (shown in green);

3. Send messages anticlockwise around the loop until convergence (Figure 2.13d).
We must also use one initial message (again in green).

In fact, the messages in the clockwise and anti-clockwise loops do not affect
each other since the messages in a particular direction only depend on incoming
messages running in the same direction. So we can execute steps 2 and 3 of this
schedule in either order (or even in parallel!).

For the first step of the schedule, the actual messages passed are shown in
(Figure 2.13b). The messages sent around the loop clockwise A,B,C,D are
shown in Table 2.5 for first five iterations around the loop. By the fourth
iteration the messages are no longer changing, which means that they have
converged (and so we could have stopped after four iterations).

Itera�on A B C D

1 0.360 0.066 0.485 0.809

2 0.226 0.035 0.492 0.813

3 0.224 0.035 0.492 0.814

4 0.224 0.035 0.492 0.814

5 0.224 0.035 0.492 0.814

Table 2.5: The messages sent around the loop in the first five iterations of
message passing – the numbers shown are the parameters of the Bernoulli dis-
tribution of each message. By the fourth iteration, the messages have stopped
changing, showing that the algorithm has converged rapidly.

The messages for the anti-clockwise loop A′, B′, C ′, D′ turn out to be iden-
tical to the corresponding A,B,C,D messages, because the messages from
hasSkills3 and hasSkills4 are the same. Given these messages, the only
remaining step is to multiply together the incoming messages at csharp and
sql to get the marginal distributions.

2.3. LOOPINESS 75

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(a)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(b)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

C

D

Bern(0.5)

B

A

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(c)

Bern(1) Bern(0)Bern(0) Bern(0)

Bern(0.5)

Bern(0.818)

Bern(0.5)

Bern(0.111)Bern(0.111)

Bern(0.111)

Bern(0.111)

Bern(0.111)

D'

Bern(0.5)

C'

A'

B'

isCorrect1 isCorrect2isCorrect3 isCorrect4

csharp sql

hasSkills3

hasSkills4
Bernoulli(0.5)

Bernoulli(0.5)

AddNoise AddNoise

And

AddNoise

And

AddNoise

(d)

Figure 2.13: Loopy belief propagation in the four-question factor graph (a) The factor graph of Fig-
ure 2.12 rearranged to show the loop more clearly. (b) The first stage of loopy belief propagation, showing
messages being passed inwards toward the loop. (c,d) The second and third stages of loopy belief propagation
where messages are passed clockwise or anti-clockwise around the loop. In each case, the first message (A or A’)
is computed using a uniform initial message (green dashed arrow).

76 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Loopy belief propagation gives the marginal distributions for csharp and sql

as Bernoulli(0.809) and Bernoulli(0.010) respectively. If we use an exact infer-
ence method to compute the true posterior marginals, we get Bernoulli(0.800)
and Bernoulli(0.024), showing that our approximate answers are reasonably
close to the exact solution. For the purposes of this application, we are inter-
ested in whether a candidate has a skill or not but can tolerate the predicted
probability being off by a percentage point or two, if it can make the system
run quickly. This illustrates why approximate inference methods can be so use-
ful when tackling large-scale inference problems. However, it is always worth
investigating what inaccuracies are being introduced by using an approximate
inference method. Later on, in subsection 2.5.1, we’ll look at one possible way
of doing this.

Another reason for using approximate inference methods is that they let
us do inference in much more complex models than is possible using exact
inference. The accuracy gain achieved by using a better model, that more
precisely represents the data, usually far exceeds the accuracy loss caused by
doing approximate inference. Or as the mathematician John Tukey put it,

“Far better an approximate answer to the right question. . . than an
exact answer to the wrong one.”

Self assessment 2.3

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Draw a factor graph for a six-question test which assesses three skills.
Identify all the loops in your network. If there are no loops, add more
questions until there are.

2. For your six-question test, design a message-passing schedule which uses as
few initial messages as possible (one per loop). Remember that a message
cannot be sent from a node unless messages have been received on all
edges connected to that node (except for observed variable nodes).

3. Extend your three question Infer.NET model from the previous self assess-
ment, to include the fourth question of Figure 2.12. Use the TraceMessages
attribute to see what messages Infer.NET is sending and confirm that they
match the schedule and values shown in Table 2.5.

Review of concepts introduced in this section

loops A loop is a path through a graph starting and ending at the same node
which does not go over any edge more than once. For example, see the loop
highlighted in red in Figure 2.13a.

http://infernet.azurewebsites.net/docs/Adding attributes to your model.aspx

2.3. LOOPINESS 77

tree A graph which does not contain any loops, such as the factor graphs of
Figure 2.4 and Figure 2.5. When a graph is a tree, belief propagation can be
used to give exact marginal distributions.

loopy graph A graph which contains at least one loop. For example, the
graph of Figure 2.12 contains a loop, which may be seen more clearly when it
is laid out as shown in Figure 2.13a. Loopy graphs present greater difficulties
when performing inference calculations – for example, belief propagation no
longer gives exact marginal distributions.

exact inference an inference calculation which exactly computes the de-
sired posterior marginal distribution or distributions. Exact inference is usually
only possible for relatively small models or for models which have a particular
structure, such as a tree. See also Panel 2.2.

approximate inference an inference calculation which aims to closely ap-
proximate the desired posterior marginal distribution, used when exact inference
will take too long or is not possible. For most useful models, exact inference
is not possible or would be very slow, so some kind of approximate inference
method will be needed.

loopy belief propagation an approximate inference algorithm which applies
the belief propagation algorithm to a loopy graph by initialising messages in
loops and then iterating repeatedly. The loopy belief propagation algorithm is
defined in algorithm 2.2.

converged The state of an iterative algorithm when further iterations do
not lead to any change. When an iterative algorithm has converged, there is
no point in performing further iterations and so the algorithm can be stopped.
Some convergence criteria must be used to determine whether the algorithm has
converged – these usually allow for small changes (for example, in messages)
to account for numerical inaccuracies or to stop the algorithm when it has
approximately converged, to save on computation.

message-passing schedule The order in which messages are calculated and
passed in a message passing algorithm. The result of the message passing algo-
rithm can change dramatically depending on the order in which messages are
passed and so it is important to use an appropriate schedule. Often, a schedule
will be iterative – in other words, it will consist of an ordering of messages to
be computed repeatedly until the algorithm converges.

78 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.4 Moving to real data

Now that we have fully tested out our model on example data, we are ready to
work with some real data. We asked 22 volunteers to complete an assessment
test consisting of 48 questions, intended to assess seven different development
skills. Many of the questions required two skills, because they needed both the
knowledge of a software development concept (such as object-oriented program-
ming) and a knowledge of the programming language that the question used
(such as C#).

As well as completing the test, we also asked each volunteer to say which
development skills they consider that they have. These self-assessed skills will
be used as ground truth for the skill variables – that is, we will consider them
to be the true values of the variables. Such ground truth data will be used to
assess the accuracy of our system in inferring the skills automatically from the
volunteers’ answers. The ground truth data should be reasonably reliable since
the volunteers have no incentive to exaggerate their skills: the results were kept
anonymous so that the reported skills and answers could not be linked to any
particular volunteer. However, it is plausible that some volunteers may over-
or under-estimate their own skills and we will need to bear this in mind when
using these data to assess our accuracy.

Part of the raw data that we collected is shown in Table 2.6.

S1 S2 S3 S4 S5 S6 S7 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27

ANS 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P1 2 4 3 3 4 3 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P2 1 4 3 3 4 1 4 5 1 5 1 5 1 4 3 3 5 3 2 3 4 5 5 2 2 4

P3 3 4 5 2 4 5 4 5 1 5 5 3 2 5 5 1 2 1 2 3 1 5 1 1 4 4

P4 2 4 3 3 4 3 4 5 1 5 1 1 2 4 3 1 2 3 2 3 2 2 2 2 2 4

P5 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P6 1 3 3 5 3 4 5 2 5 2 1 4 2 2 4 4 5 1 3 2 1 3 1 2 3 5

P7 2 4 3 3 4 1 4 5 1 5 1 1 1 2 3 1 2 3 2 3 4 5 2 2 2 4

P8 2 4 5 2 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P9 2 4 1 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 2 2 1 2 5

P10 2 4 3 3 4 1 4 5 1 5 1 1 2 4 3 1 2 3 2 2 1 5 2 2 2 4

P11 1 4 3 3 4 3 4 5 1 5 3 1 1 4 3 1 2 3 2 3 4 5 4 2 2 4

P12 1 1 1 3 4 1 4 5 1 5 1 5 5 2 2 1 5 3 2 3 4 5 2 2 2 4

P13 2 4 3 3 4 3 4 5 1 5 1 1 1 2 3 1 2 3 2 3 4 2 2 2 2 4

P14 2 5 3 3 5 5 4 5 1 5 1 1 5 2 3 1 2 3 2 3 2 4 2 3 2 4

P15 2 4 3 3 4 3 4 5 1 5 4 5 1 2 3 5 2 3 2 4 4 1 2 3 2 4

P16 2 4 3 5 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 5 2 2 4

P17 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 3 3 4 5 2 2 2 4

P18 2 4 3 3 4 3 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 2 2 2 2 4

P19 2 4 5 3 4 3 4 2 1 5 1 5 1 4 3 1 2 3 2 3 4 3 2 2 2 4

P20 2 4 3 3 4 1 4 5 1 5 1 1 1 4 3 1 2 3 2 3 4 4 2 2 2 4

P21 2 4 3 3 4 1 3 5 1 5 1 1 1 4 3 1 2 3 2 3 4 5 2 2 2 4

P22 2 4 4 3 4 1 4 5 1 5 1 1 1 3 3 1 2 4 2 3 4 5 5 2 2 4

. . .

Table 2.6: Part of the raw data collected from volunteers completing a real assessment test. This data consists
of the self-assessed skills (S1-S7) and the answers to each question (Q1-Q48). The first row of data gives the
correct answers to each question. Each subsequent row gives the data for one of the participants.

2.4. MOVING TO REAL DATA 79

In this machine learning application, we need the system to be able to work
with any test supplied to it, without having to gather new ground truth data
for each new test. This means that we cannot use the ground truth data when
doing inference in our model, since we will not have this kind of data in practice.
Learning without using ground truth data is called unsupervised learning.
We still need ground truth data when developing our system, however, since
we need to evaluate how well the system works. We will evaluate it on this
particular test, with the assumption that it will then work with similar accuracy
on new, unseen tests.

2.4.1 Visualising the data

When working on a new data set it is essential to spend time looking at the data
by visualising it in various ways (see Panel 2.3 for why this is so important). So
let’s now look at making a visualisation of our test answers.

The crucial elements of a good visualisation are (i) it is a faithful represen-
tation of the underlying data, (ii) it makes at least one aspect of the data very
clear, (iii) it stands alone (does not require any explanatory text) and (iv) it
is otherwise as simple as possible. There are entire books on the topic (such

Panel 2.3 – The importance of visualisation

Machine learning algorithms often don’t fail when there is an error in the code,
but instead continue silently on to give inaccurate results. Visualisations of
data, of the inference process, and of results provide a very effective way of
detecting and understanding such errors.
Visualisations are also important because:

• They let you discover issues with the data, such as mistakes in the data
entry, missing data, mislabelled data, data that was saved in the wrong
format or data which is being loaded incorrectly.

• They let you see patterns in the data, even before any model is created or
any inference calculations are done. Carefully designed visualisations can
expose a useful pattern in much the same way that a carefully designed
model can expose one.

• They let you communicate the results of your work to others, to help
convince them that your system is working well or to demonstrate that it
is extracting useful information from the data.

Rather than asking “do I need to visualise this data?”, a better question is “can
I afford NOT to visualise this data?”. Any time you choose not to visualise some
data, some part of the inference process or some results, there is a (high) chance
that you are missing something important. A good rule of thumb is that it
is worth spending at least 20% of your time on making visualisations.

80 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

as Tufte [1986]), as well as useful websites (these are constantly changing – use
your search engine!) and commercial visualisation software (such as Tableau).
In addition, most programming languages have visualisation and charting li-
braries available, particularly those languages focused on data science such as
R, Python and Matlab. In this book we aim to illustrate what makes a good vi-
sualisation by example, through the various figures illustrating each case study.
For example, in Table 2.4 the use of bars to represent probabilities, as well as
numbers, makes it easier to see the relationship between which questions were
correct and the inferred skill probabilities.

We want to visualise whether each person got each question right or wrong,
along with the skills needed for that question (as provided by the person who
wrote the test). For the skills needed, we can use a grid where a white square
means the skill is needed and a black square means it is not needed (Fig-
ure 2.14a). Similarly for the answers, we can use another grid where white
means the answer was right and black means it was wrong (Figure 2.14b). To
make it easier to spot the relationship between the skills and the answers, we
can align the two grids, giving the visualisation of Figure 2.14.

Already this visualisation is telling us a lot about the data: it lets us see
which questions are easy (columns that are nearly all white) and which are hard
(columns that are nearly all black). Similarly, it lets us identify individuals who
are doing well or badly and gives us a sense of the variation between people.
Most usefully, it shows us that people often get questions wrong in runs. In
our test consecutive questions usually need similar skills, so a run of wrong
questions can be explained by the lack of a corresponding skill. These runs are
reassuring since this is the kind of pattern we would expect if the data followed
the assumptions of our model.

A difficulty with this visualisation is that we have to look back and forth
between the two grids to discover the relationship between the answers to a
question and the skills needed for a question. It is not particularly easy, for
example, to identify the set of skills needed for the questions that a particular
person got wrong. To address this, we could try to create a visualisation that
contains the information in both of the grids. One way to do this is to associate
a colour with each skill and colour the wrong answers appropriately, as shown
in Figure 2.15:

http://www.tableau.com

2.4. MOVING TO REAL DATA 81

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

Figure 2.15: A visualisation of the same data as Figure 2.14 but using only
a single, coloured grid, to make it easier to see associations between wrong
questions and skills.

Questions

(a) Skills for questions

Questions

(b) Responses

Figure 2.14: Visualisation of the answer data and skills needed for each question.
(a) Each row corresponds to a skill and each column to a question. White
squares show which skills are needed for each question (b) Each row corresponds
to a person and again each column corresponds to a question. Here, white
squares show which questions each person got correct.

82 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

This visualisation makes it easier to spot patterns of wrong answers associ-
ated with the same skill, without constantly switching focus between two grids.
We could instead have chosen to highlight the correct answers but in this case it
is more useful to focus on the wrong answers since these are rarer, and so more
interesting. For example, we can see that those people who got some orange
(Object Oriented Programming) questions wrong often got many other orange
questions wrong, since orange grid cells often appear in blocks. This is very sug-
gestive of the absence of an underlying skill influencing the answers to all these
questions. Conversely for the cyan (Desktop apps) questions there seems to be
less block structure, suggesting that our assumption of one skill influencing all
these questions is weaker in this case.

2.4.2 A factor graph for the whole test

Reassured that our data looks plausible, we would now like to run inference on
a factor graph for this assessment test. We’ve already seen factor graphs for
three questions (Figure 2.5) and for four questions (Figure 2.12) where there
were just two skills being modelled. But if we tried to draw a factor graph for
all 48 questions and all seven skills in the same way, it would be huge and not
particularly useful. To avoid such overly large factor graphs, we can represent
repeated structure in the graph using a plate. Here is an example of using a
plate used to represent the prior over five skill variables:

5

skill

Bernoulli(0.5)

=
skill1 skill2 skill3 skill4 skill5

Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5) Bernoulli(0.5)

Figure 2.16: Using a plate to represent repeated structure in a factor graph

The factor graph on the left with a plate is equivalent to the factor graph on
the right without a plate. The plate is shown as a rectangle with the number
of repetitions in the bottom right corner – which in this case is 5. Variable
and factor nodes contained in the plate are considered to be replicated 5 times.
Where a variable has been replicated inside a plate it becomes a variable array
of length 5 – so in this example skill is an array with elements skill[0],
skill[1], skill[2], skill[3] and skill[4]. Note that we use index 0 to refer to
the first element of an array.

Figure 2.17 shows how we can use plates to draw a compact factor graph
for the entire test. There are two plates in the graph, one across the skills and
one across the questions. Instead of putting in actual numbers for the number
of repetitions, we have used variables called skills and questions. This gives
us a factor graph which is configurable for any number of skills and any number
of questions and so could be used for any test. For our particular test, we will

2.4. MOVING TO REAL DATA 83

set skills to 7 and questions to 48.

Figure 2.17 has also introduced the Subarray factor connecting two new vari-
ables skillsNeeded and relevantSkills, both of which are arrays inside the
questions plate. The skillsNeeded array must be provided (indicated by the
grey shading) and contains the information of which skills are needed for each
question. Each element of skillsNeeded is itself a small array of integers spec-
ifying the indices of the skills needed for that question - so for a question that
needs the first and third skills this will be [0, 2]. The Subarray factor uses this
information to pull out the relevant subarray of the skill array and put it into
the corresponding element of the relevantSkills array. Continuing our exam-
ple, this would mean that the element of relevantSkills would contain the
subarray [skill[0], skill[2]]. From this point on, the factor graph is as before:
hasSkills is an AND of the elements of relevantSkills and isCorrect is
then a noisy version of hasSkills.

2.4.3 Our first results

We are now ready to get our first results on a real data set. It’s taken a
while to get here, because of the time we have spent testing out the model on
small examples and visualising the data. But, by doing these tasks, we can be

skills

questions

skillsNeeded

isCorrect

skill

relevantSkills

hasSkills

Bernoulli(0.5)

Subarray

And

AddNoise

Figure 2.17: A factor graph for the entire test, constructed using plates and the
Subarray factor.

84 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Skills

(a) Inferred skills

Skills

(b) Self-assessed skills

Figure 2.18: Initial results of applying our model to real assessment data. (a)
Computed probability of each person having each skill, where white corresponds
to probability 1.0, black to probability 0.0 and shades of grey indicate inter-
mediate probability values. (b) Ground truth self-assessed skills where white
indicates that the person assessed that they have the skill and black indicates
that they do not. Unfortunately, the inferred skills have little similarity to the
self-assessed skills.

confident that our inference results will be meaningful from the start.

We can apply loopy belief propagation to the factor graph of Figure 2.17
separately for each person, with isCorrect set to that person’s answers. For
each skill, this will give the probability that the person has that skill. Repeating
this for each person leads to a matrix of results which is shown in the visuali-
sation on the left of Figure 2.18, where the rows correspond to different people
and the columns correspond to different skills. For comparison, we include the
self-assessed skills for the same people on the right of the figure.

There is clearly something very wrong with these inference results! The
inferred skills show little similarity to the self-assessed skills. There are a couple
of people where the inferred skills seem reasonable – such as the people on the
3rd and 6th rows. However, for most people, the system has inferred that they
have almost all the skills, whether they do or not. How can this happen after
all our careful testing and preparation?

In fact, the first time a machine learning system is applied to real data, it is
very common that the results are not as intended. The challenge is to find out
what is wrong and to fix it.

2.4. MOVING TO REAL DATA 85

Self assessment 2.4

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Create an alternative visualisation of the data set of Table 2.6 which shows
which people get the most questions right and which questions the most
people get right. For example, you could sort the rows and columns of
Figure 2.14 or Figure 2.15. What does your new visualization show that
was not apparent in the visualisations used in this section? Note: the
data set can be downloaded in Excel or CSV form using the buttons by
the online version of the table.

2. Implement the factor graph with plates from Figure 2.17 using Infer.NET.
You will need to use Variable arrays, ForEach loops and the Subarray
factor. Apply your factor graph to the data set and verify that you get
the results shown in Figure 2.18a.

Review of concepts introduced in this section

ground truth A data set which includes values for variables which we want to
predict or infer, used for evaluating the prediction accuracy of a model and/or
for training a model. Ground truth data is usually expensive or difficult to
collect and so is a valuable and scarce commodity in most machine learning
projects.

unsupervised learning Learning which doesn’t use labelled (ground truth)
data but instead aims to discover patterns in unlabelled data automatically,
without manual guidance.

visualisation A pictorial representation of some data or inference result which
allows patterns or problems to be detected, understood, communicated and
acted upon. Visualisation is a very important part of machine learning, as
discussed in Panel 2.3.

plate A container in a factor graph which compactly represents a number of
repetitions of the contained nodes and edges. The plate is drawn as a rectangle
and labelled in the bottom right hand corner with the number of repetitions.
For example, see Figure 2.16.

variable array an ordered collection of variables where individual variables
are identified by their position in the ordering (starting at zero). For example,
a variable array called skill of length 5 would contain five variables: skill[0],
skill[1], skill[2], skill[3], and skill[4].

http://infernet.azurewebsites.net/docs/Arrays and ranges.aspx
http://infernet.azurewebsites.net/docs/ForEach blocks.aspx
http://infernet.azurewebsites.net/docs/Array and list factors.aspx
http://infernet.azurewebsites.net/docs/Array and list factors.aspx

86 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.5 Diagnosing the problem

When a machine learning system is not working there are generally three pos-
sible reasons: bad data, bad model, or bad inference. Here are some common
causes of problems under each of these three headings:

Bad data: data items have been entered, stored or loaded incorrectly; the data
items are incomplete or mislabelled; data values are too noisy to be useful;
the data is biased or unrepresentative of how the system will be used; it
is the wrong data for the task; there is insufficient data to make accurate
predictions.

Bad model: one or more of the modelling assumptions are wrong – that is,
not consistent with the actual process that generated the data; the model
makes too many simplifying assumptions; the model contains insufficient
assumptions to make accurate predictions given the amount of available
data.

Bad inference: the inference code contains a bug; the message-passing sched-
ule is bad; the inference has not converged; there are numerical problems
(e.g. rounding, overflow); the approximate inference algorithm is not ac-
curate enough.

In our case, we can be fairly confident that the data is good because we have
inspected and visualised it carefully. So it seems likely that either the model or
the inference is causing the problem. We’ll start by checking that the inference
algorithm, loopy belief propagation, is working correctly.

2.5.1 Checking the inference algorithm

To see if inference is working correctly, we need to be able to separate out any
problems caused by inference issues from any problems caused by our model not
matching the data. To achieve this separation, we can generate a new synthetic
data set which is guaranteed to match the model exactly. If we get poor results
using this data set it suggests that there is an inference problem. We will create
this synthetic data set by sampling from the joint distribution specified by the
model, which guarantees that the data is consistent with the model (refer to
chapter 1 for a reminder of what sampling is). We can generate samples by
running the data generation process specified by the model – a process called
ancestral sampling, as defined by algorithm 2.3 (see also Bishop [2006]).

Looking at the factor graph of Figure 2.17, we run ancestral sampling follow-
ing the arrows from top to bottom (from ancestor to descendent), by sampling
a value for each variable given its parents in the graph. If a variable is the child
variable of a deterministic factor, then we just compute its value from the values
of its parent variables using the function encoded by the deterministic factor
(such as the AND function).

So, starting at the top, we sample a value for each element of the skill

array from a Bernoulli(0.5) distribution – in other words we pick true with

2.5. DIAGNOSING THE PROBLEM 87

Algorithm 2.3: Ancestral sampling

Input: factor graph
Output: sampled values for each variable in the graph

Order variables from top to bottom so that parent variables come before
child variables.
foreach variable v in this ordering do

If v has parent variables, retrieve their sampled values (which must
already exist due to the ordering).
Sample a value for v from the parent factor function, conditioned on
the retrieved parent values, if any. If the parent factor is deterministic
(such as an And factor) this simplifies to just computing the child
value from the parent values.
Store the sampled value.

end

50% probability and false otherwise. For the relevantSkills array element
for a question we just pull out the already-sampled values of the skill array
that are relevant to that question. These values are then ANDed together to
give hasSkills. Figure 2.19 gives an example set of 22 samples for the skill

and hasSkills arrays. To get a data set with multiple rows we just repeat the
entire sampling process for each row. Notice how, for each row, hasSkills is
always the same for questions that require the same skills (are the same colour).

The final stage of ancestral sampling in our model requires sampling each
element of isCorrect given its parent element of hasSkills. Where hasSkills
is true we sample from Bernoulli(0.9) and where hasSkills is false we sample
from Bernoulli(0.2) (following Table 2.1). The result of performing this step
gives the isCorrect samples of Figure 2.19c. Notice that these samples end up
looking like a noisy version of the hasSkills samples – about one in ten white
squares has been flipped to colour and about one in five coloured squares has
been flipped to white.

We now have an entire sampled data set, which we can run our inference
algorithm on to test if it is working correctly. The inferred skill probabilities
are shown in Figure 2.20 next to the actual skills that we sampled. Unlike with
the real data, the results are pretty convincing: the inferred skills look very
similar to the actual sampled skills. So, when we run inference on a data set
that conforms perfectly to our model, the results are good. This suggests that
the inference algorithm is working well and the problem must instead be that
our model does not match the real data.

An important and subtle point is that the inferred skills are close but not
identical to the sampled skills, even though the data is perfectly matched to the
model. This is because there is still some remaining uncertainty in the skills
even given all the answers in the test. For example, the posterior probability of
skill 7 (C#) is uncertain in the cases where the individual does not have skill 1
(Core) or skill 2 (OOP). This makes sense because the C# skill is only tested

88 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Skills

(a) Sampled
skill array

Questions

(b) hasSkills array computed from sampled skill array

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

(c) Sampled isCorrect array

Figure 2.19: Synthetic data set created using ancestral sampling. First the
skill array was sampled and then the hasSkill array was computed from it.
The isCorrect array was then sampled given the hasSkill array, which has
the effect of making it a noisy version of hasSkill.

in combination with these first two skills – if a person does not have them then
they will get the associated questions wrong, whether or not they know C#. So
in this case, the inference algorithm is correct to be uncertain about whether or
not the person has the C# skill. We could use this information to improve the
test, such as by adding questions that directly test the C# skill by itself.

2.5.2 Working out what is wrong with the model

We have determined that our model assumptions are not matching the data –
now we need to identify which assumption(s) are at fault. We can again use

2.5. DIAGNOSING THE PROBLEM 89

Skills

(a) Inferred skills

Skills

(b) Sampled skills

Figure 2.20: Skills inferred from a sample data set shown next to the actual
sampled skills for that data set. The inferred skills are close to the actual skills,
suggesting that the inference algorithm is working well.

sampling to achieve this but rather than sampling the skill array, we can set it
to the true (self-assessed) values. If we then sample the isCorrect array, it will
show us which answers the model is expecting people to get wrong if they had
these skills. By comparing this to the actual isCorrect array from our data set,
we can see where the model’s assumptions differ from reality. Figure 2.21 shows
that the actual isCorrect data looks quite different to the sampled data. The
biggest difference appears to be that our volunteers got many more questions
right than our model is predicting, given their stated skills. This suggests that
they are able to guess the answer to a question much more often than the 1-in-5
times that our model assumes. On reflection, this makes sense – even if someone
doesn’t have the skill to answer a question they may be able to eliminate some
answers on the basis of general knowledge or intelligent guesswork.

We can investigate this further by computing the fraction of times that our
model predicts our volunteers should get each question right, given their self-
assessed skills, and then compare it to the fraction of times they actually got it
right (Figure 2.22).

For a few questions, the fraction of people who got them correct matches
that predicted by the model – but for most questions the actual fraction is
higher than the predicted fraction. This suggests that some questions are easier
to guess than others and that they can be guessed correctly more often than
1-in-5 times. So we need to change our assumptions (and our model) to allow
different guess probabilities for different questions. We can modify our fourth
assumption as follows:

90 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Questions

(a) Sampled isCorrect array given true (self-assessed) skills

Questions

Core OOP Life Cycle Web Apps Desktop apps SQL C#

(b) Observed isCorrect array from our data set

Figure 2.21: The modelling problem can be diagnosed by comparing (a) the
isCorrect data sampled from the model given the self-assessed skills and (b) the
observed isCorrect data showing which questions the volunteers actually got
wrong.

Question number

1 2 3 4 5 6 7 8 9 1011 1213 141516 1718 1920 2122 2324 252627 2829 3031 3233 3435 363738 3940 4142 4344 4546 4748

0

0.2

0.4

0.6

0.8

1

Predicted

Actual

Figure 2.22: The fraction of people the model predicts will get each question right given their self-assessed skills
(blue) compared to the fraction that actually got it right (red), for each of the 48 questions in the test.

2.5. DIAGNOSING THE PROBLEM 91

4 If a candidate doesn’t have all the skills needed for a question, they will
pick an answer at random guess an answer, where the probability that
they guess correctly is about 20% for most questions but could vary up to
about 60% for very guessable questions.

This assumption means that, rather than having a fixed guess probability for
all questions, we need to extend our model to learn a different guess probability
for each question.

Self assessment 2.5

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Make a check list of the causes of problems with machine learning systems
(either data problems, model problems or inference problems). Rank the
causes in the order which you think are most likely to occur. Now if you
are working on a machine learning problem in the future, this check list
could be useful when diagnosing the root cause of the problem.

2. Write a program to implement ancestral sampling in the skills model, as
was described in this section, and use it to make a synthetic data set.
Visualise this data set, for example, using the visualisation you developed
in the previous self assessment. Check that your samples look similar to
the samples from Figure 2.19.

3. Try changing a couple of the probability values that we have chosen in the
model, such as the prior probability of having a skill or the probability of
guessing the answer. Run your sampling program again and see how the
synthetic data set changes. You could imagine repeating this procedure
until the synthetic data looks as much like the real data as possible given
the model assumptions. This would be quite inefficient, so we instead
learn these probability values as part of the inference algorithm, as we
shall see in the next section.

Review of concepts introduced in this section

ancestral sampling A process of producing samples from a probabilistic
model by first sampling variables which have no parents using their prior dis-
tributions, then sampling their child variables conditioned on these sampled
values, then sampling the children’s child variables similarly and so on. Ances-
tral sampling is defined in algorithm 2.3. For an example of ancestral sampling,
see subsection 2.5.1.

92 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

2.6 Learning the guess probabilities

You might expect that inferring the guess probabilities would require very dif-
ferent techniques than we have used so far. In fact, our approach will be exactly
the same: we add the probability values we want to learn as new continuous
random variables in our model and use probabilistic inference to compute their
posterior distributions. This demonstrates the power of the model-based ap-
proach – whenever we want to know something, we introduce it as a random
variable in our model and compute it using a standard inference algorithm.

Let’s see how to modify our model to include the guess probabilities as
random variables. To keep things consistent, we’ll also add in a variable for
the mistake probability (actually the no-mistake probability) but we’ll keep this
fixed at a 10% chance of making a mistake. To start with, we’ll change how
we write the AddNoise factor. Figure 2.23 shows how the existing AddNoise
factor (which has the guess and no-mistake probabilities hard-coded at 0.2 and
0.9 respectively) can be replaced by a general Table factor which takes these
probabilities as additional arguments. We can then set these arguments using
two new random variables, which we name as probGuess and probNoMistake.
Inferring the posterior distribution over the variable probGuess will allow us to
learn the guess probability for a question. But before we can do this, we must
first see what kind of distribution we can use to represent the uncertainty in
such a variable.

2.6.1 Representing uncertainty in continuous values

The two new variables probGuess and probNoMistake have a different type to
the ones we have encountered so far: previously all of our variables have been
binary (two-valued) whereas these new variables are continuous (real-valued)
in the interval 0.0 to 1.0 inclusive. This means we cannot use a Bernoulli
distribution to represent their uncertainty. In fact, because our variables are
continuous, we need to use a distribution based on a probability density
function – if you are not familiar with this term, read Panel 2.4.

We need a distribution whose density function can represent both our prior
assumption “the probability that they guess correctly is about 20% for most
questions but could vary up to about 60% for very guessable questions” and
also the posterior over the guess probabilities, once we have learned from the
data. The distribution should also be restricted to the range 0.0 to 1.0 inclusive.
A suitable function would be one that could model a single ‘bump’ that lies in
this range, since the bump could be broad from 20%-60% for the prior and then
could become narrow around a particular value for the learned posterior. A
distribution called the beta distribution meets these requirements. It has the
following density function:

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(2.18)

2.6. LEARNING THE GUESS PROBABILITIES 93

Panel 2.4 – Probability Density Functions

When we want to represent the uncertainty in a continuous variable, such as a person’s height, apparently rea-
sonable statements like “There is an 80% chance that his height is 1.84m” don’t actually make sense. To see why,
consider the mathematically equivalent statement “There is an 80% chance that his height is 1.840000000. . . m”.
This statement seems very unreasonable, because it suggests that, no matter how many additional decimal places
we measure the height to, we will always get zeroes. In fact, the more decimal places we measure, the more likely
it is that we will find a non-zero. If we could keep measuring to infinite precision, the probability of getting
exactly 1.84000. . . (or any particular value) would effectively vanish to nothing.
So rather than refer to the probability of a continuous variable taking on a particular value, we instead refer to
the probability that its value lies in a particular range, such as the range from 1.835m to 1.845m. In everyday
language, we convey this by the accuracy with which we express a number, so when we say “1.84m”, we often
mean “1.84m to the nearest centimetre”, that is, anywhere between 1.835m and 1.845m. We could represent a
distribution over a continuous value, by giving a set of such ranges along with the probability that the value lies
in each range, such that the probabilities add up to one. For example:

Height(m)

1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

0

0.1

0.2

0.3

This approach can be useful but often also causes problems: it introduces a lot of parameters to learn (one
per range); it can be difficult to choose a sensible set of ranges; there are discontinuities as we move from one
range to another; and it is hard to impose smoothness, that is, that probabilities associated with neighbouring
ranges should be similar. A better solution is to define a function, such that the area under the function between
any two values gives the probability of being in that range of values. Such a function is called a probability
density function (pdf). For example, this plot shows a Gaussian pdf (we’ll learn much more about Gaussians
in chapter 3):

Height (m)

1.8 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9

0

10

20

30

40

Notice that the y-axis now goes up well above 1, since a probability density is not limited to be between 0 and 1.
Instead, the total area under the function is required to be 1.0. The area of the shaded region between 1.835m and
1.845m is 0.383, which gives the probability that the height lies between these two values. Similarly, computing
the area under the pdf between any two points gives the probability that the height lies between those points.

94 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

hasSkills

isCorrect

AddNoise

(a)

probGuess probNoMistake
hasSkills

isCorrect

Table

(b)

Figure 2.23: Two ways of writing the AddNoise factor: (a) As a custom factor
with the guess and mistake probabilities ‘built-in’. (b) Using a general purpose
Table factor which has arguments for the probability that the child is true

given that the parent is false (left argument) or given the parent is true (right
argument). This way of writing the factor allows the arguments to be included
as variables in the graph.

where B() is the beta function that the distribution is named after, which is
used to ensure the area under the function is 1.0. The beta density function has
two parameters, α and β that between them control the position and width of
the bump – Figure 2.24a shows a set of beta pdfs for different values of these
parameters. The parameters α and β must be positive, that is, greater than
zero. The mean value α

α+β dictates where the centre of mass of the bump is
located and the sum α+β controls how broad the bump is – larger α+β means
a narrower bump. We can configure a beta distribution to encode our prior
assumption by choosing α = 2.5 and β = 7.5, which gives the density function
shown in Figure 2.24b.

x

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Beta(1,1) Beta(2,2) Beta(2,5)

Beta(4,10) Beta(8,20)

(a)

x

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(b)

Figure 2.24: (a) Example beta distributions for different values of the parame-
ters α and β. (b) The Beta(2.5,7.5) distribution which we can use as a prior for
the probability of guessing a question correctly. The peak of the distribution is
at around 0.2 but it extends to the right up to around 0.6 to allow for questions
that are easier to guess.

2.6. LEARNING THE GUESS PROBABILITIES 95

We want to extend our factor graph so that the prior probability of each
probGuess variable is:

p(probGuess) = Beta(probGuess; 2.5, 7.5) (2.19)

Notice the notation here: we use a lower-case p to denote a probability density
for a continuous variable, where previously we have used an upper-case P to
denote the probability distribution for a discrete variable. This notation acts
as a reminder of whether we are dealing with continuous densities or discrete
distributions.

Taking the factor graph of Figure 2.17, we can extend it to have the guess
probabilities included as variables in the graph with this distribution as the
prior. One other change is needed: to infer the guess probabilities, we need
to look at the data across as many people as possible (it would be very inac-
curate to try to estimate a guess probability from just one person’s answer!).
So we must now extend the factor graph to model everyone’s results at once,
that is, the entire dataset. To do this, we add a new plate to our factor graph
which replicates all variables that are specific to each person (which are: skill,
relevantSkills, hasSkills and isCorrect). Since we are assuming that
the guess probabilities for a question are the same for everyone, probGuess

is placed outside the new plate, but inside the questions plate. Since the no-
mistake probability is assumed to be the same for everyone and for all questions,
probNoMistake is placed outside of all plates. The final factor graph, of the
entire data set, is shown in Figure 2.25.

We can run inference on this graph to learn the guess probabilities. Even now
that we have continuous variables, we can essentially run loopy belief propaga-
tion on the graph. The only modification we need is a change to ensure that the
uncertainty in our guess probabilities is always represented as a beta distribu-
tion (this modified form is called expectation propagation and will be described
fully in the next chapter). After running inference, we get a beta distribution
for each question representing the uncertain value of the guess probability for
that question. The beta distributions for some of the questions are shown in
Figure 2.26 (we show only every fifth question, so that the figure is not over-
whelmed by too many curves). The first thing to note is that the distributions
are all still quite wide, indicating that there is still substantial uncertainty in
the guess probabilities. This is not too surprising since the data set contains
relatively few people and we only learn about question’s guess probability from
the subset of those people who are inferred not to have the skills needed for a
question. For question 1, where we assume pretty much everyone has the (Core)
skill needed, the posterior distribution is very close to the prior (compare the
curve to Figure 2.24b) since there is hardly any data to learn the guess proba-
bility from, as almost no one is guessing this question. Several of the questions
(such as 11, 16 and 26) have posteriors that are shifted slightly to the right
from the prior, suggesting that these are a bit easier to guess than 1-in-5. Most
interestingly, the guess probabilities for some questions have been inferred to
be either quite low (questions 6, 31) or quite high (question 21, 36, 41). We

96 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

questionspeople

skills

skillsNeeded

isCorrect

probNoMistake

skill

relevantSkills

hasSkillsprobGuess

Beta(2.5,7.5)

Bernoulli(0.5)

Subarray

And

Table

Figure 2.25: A factor graph for the entire data set, for all people who took the
test. The guess probabilities for each question appear as a variable array with
an appropriate beta prior.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Question 1

Question 6

Question 11

Question 16

Question 21

Question 26

Question 31

Question 36

Question 41

Question 46

Figure 2.26: Posterior beta distributions over probGuess for every fifth question.

can plot the posteriors over the guess probabilities for all of the questions by
plotting the mean (the centre of mass) of each along with error bars showing the
uncertainty (Figure 2.27). This shows that a substantial number have a guess

2.6. LEARNING THE GUESS PROBABILITIES 97

probability which is higher than 0.2.

Just as a reminder – we have learned these guess probabilities without know-
ing which people had which skills, that is, without using any ground truth data.
Since it doesn’t have ground truth, the model has had to use all the assumptions
that we built into it, in order to infer the guess probabilities.

We can now investigate whether learning the guess probabilities has im-
proved the accuracy of the skills we infer for each person. Figure 2.28 shows the
inferred skill posteriors for the old model and for the new model with learned
guess probabilities. Visually, it is clear that the new probabilities are closer to
the ground truth skills, which is great news!

2.6.2 Measuring progress

As well as visually inspecting the improvements,
it is also important to measure the improvements
numerically. To do this, we must choose an eval-
uation metric which we will use to measure how
well we are doing. For the task of inferring an appli-
cant’s skills, our evaluation metric should measure
how close the inferred skill probabilities are to the
ground truth skills. A common metric to use is the
probability of the ground truth values under the
inferred distributions. Sometimes it is convenient
to take the logarithm of the probability, since this
gives a more manageable number when the probability is very small. When we

Question number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

0

0.2

0.4

0.6

Figure 2.27: The inferred guess probabilities. The blue bar shows the mean
of the posterior distribution over the guess probability for each question. The
black lines are called error bars and indicate the uncertainty in the inferred
guess probabilities. The top and bottom of the error bars show the upper and
lower quartiles of the posterior distribution, that is, the values where there is
25% chance of the guess probability being above or below the value respectively.
As we suspected, the variation in the mean shows that some questions are much
easier to guess than others.

98 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Skills

(a) Old inferred skills

Skills

(b) New inferred skills

Skills

(c) Self-assessed skills

Figure 2.28: Skill posteriors for (a) the original model and (b) the new model
with learned guess probabilities, as compared to (c) the ground truth skills.
Qualitatively, the skills inferred by the new model are closer to the self-assessed
skills.

use the logarithm of the probability, the metric is referred to as the log prob-
ability. So, if the inferred probability of a person having a particular skill is
p, then the log probability is log p if the person has the skill and log(1 − p) if
they don’t. If the person does have the skill then the best possible prediction is
p = 1.0, which gives log probability of log 1.0 = 0 (the logarithm of one is zero).
A less confident prediction, such as p = 0.8 will give a log probability with a
negative value, in this case log 0.8 = −0.097. The worst possible prediction of
p = 0.0 gives a log probability of negative infinity. This tells us two things about
this metric:

1. Since the perfect log probability is zero, and real systems are less than
perfect, the log probability will in practice have a negative value. For this
reason, it is common to use the negative log probability and consider lower
values (values closer to 0) to be better.

2. This metric penalises confidently wrong predictions very heavily, because
the logarithm gives very large negative values when the probability of the
ground truth is very close to zero. This should be taken into account
particularly where there are likely to be errors in the ground truth.

It is useful to combine the individual log probability values into a single overall
metric. To do this, the log probabilities for each skill and each person can be
either averaged or added together to get an overall log probability – we will use

2.6. LEARNING THE GUESS PROBABILITIES 99

Overall

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

Skill

Core

OOP

Life Cycle

Web Apps

Desktop apps

SQL

C#
0

0.5

1

1.5

2

2.5

3

3.5

Original

Learned

(b)

Figure 2.29: (a) Overall negative log probability for the original model and the
model with learned guess probabilities. The lower red bar indicates that the
learning the guess probabilities gives a substantially better model, according
to this metric. (b) Negative log probability for each skill, showing that the
improvement varies from skill to skill.

averaging since it makes the numbers more manageable. Notice that the best
possible overall score (zero) is achieved by having p = 1 where the person has
the skill and p = 0 where they don’t – in other words, by having the inferred
skill probability matrix exactly match the ground truth skill matrix.

Figure 2.29a shows the negative log probability averaged across skills and
people, for the original and improved models. The score for the improved model
is substantially lower, indicating that it is making quantitatively much better
predictions of the skill probabilities. We can investigate this further by breaking
down the overall negative log probability into the contributions for the different
skills (Figure 2.29b). This shows that learning the guess probabilities improves
the log probrability metric for all skills except the Core skill where it is about
the same. This is because almost everyone has the Core skill and so the original
model (which predicted that everyone has every skill) actually did well for this
skill. But in general, in terms of log probability our new results are a substantial
improvement over the original inferred skills.

2.6.3 A different way of measuring progress

It is good practice to use more than one evaluation metric when assessing the
accuracy of a machine learning system. This is because each metric will provide
different information about how the system is performing and there will be less
emphasis on increasing any particular metric. No metric is perfect – focusing
too much on increasing any one metric is a bad idea since it can end up exposing
flaws in the metric rather than actually improving the system. This is succinctly

100 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Prediction

Positive Negative

Ground
truth

Positive
True

positive
(TP)

False
negative

(FN)

True positive rate
#𝑻𝑷

#𝑻𝑷 + #𝑭𝑵

Negative
False

positive
(FP)

True
negative

(TN)

False positive rate
#𝑭𝑷

#𝑭𝑷 + #𝑻𝑵

Table 2.7: The terms positive and negative are used for the predicted and ground
truth values to avoid confusion with true and false which are used to say if the
prediction was correct or not. True and false positive rates are calculated for a
particular set of predictions (the # means ‘number of’).

expressed by Goodhart’s law which can be stated as

“When a measure becomes a target, it ceases to be a good measure.”

Using multiple evaluation metrics will help us avoid becoming victims of Good-
hart’s law.

When deciding on a second evaluation metric to use, we need to think about
how our system is to be used. One scenario is to use the system to select a short
list of candidates very likely to have a particular skill. Another is to filter out
candidates who are very unlikely to have the skill, to make a ‘long list’. For both
of these scenarios, we might only care about the ordering of people by their skill
probabilities, not on the actual value of these probabilities. In each case, we
would select the top N people, but for the shortlist N would be small, whereas
for the long list N would be large. For any number of selected candidates, we
can compute:

• the fraction of candidates who have the skill that are correctly selected –
this is the true positive rate or TPR,

• the fraction of candidates who don’t have the skill that are incorrectly
selected – this is the false positive rate or FPR.

The terminology of true and false positive predictions and their corresponding
rates is summarised in Table 2.7.

In general, there is a trade-off between having a high TPR and a low FPR.
For a shortlist, if we want everyone on the list to have the skill (FPR=0) we
would have to tolerate missing a few people with the skill (TPR less than 1).
For a long list, if we want to include all people with the skill (TPR=1) we
would have to tolerate including some people without the skill (FPR above 0).
A receiver operating characteristic curve, or ROC curve, lets us visualise
this trade-off by plotting TPR against FPR for all possible lengths of list N .
The ROC curves for the original and improved models are shown in Figure 2.30,

2.6. LEARNING THE GUESS PROBABILITIES 101

where the TPR and FPR have been computed across all skills merged together.
We could also have plotted ROC curves for individual skills but, since our data
set is relatively small, the curves would be quite bumpy, making it hard to
interpret and compare them.

Figure 2.30 immediately reveals something surprising that the log probability
metric did not: the original model does very well and our new model only
has a slightly higher ROC curve. It appears that whilst the skill probabilities
computed by the first model were generally too high, they were still giving a
good ordering on the candidates. That is, the people who had a particular skill
had higher inferred skill probabilities than the people who did not, even though
the probabilities themselves were not very accurate. A system which gives
inaccurate probabilities is said to have poor calibration. The log probability
metric is sensitive to bad calibration while the ROC curve is not. Using both
metrics together lets us see that learning the guess probabilities improved the
calibration of the model substantially but improved the predicted ordering only
slightly. We will discuss calibration in more detail in chapter 4, particularly in
Panel 4.3.

The ROC curve can be used as an evaluation metric by computing the area
under the curve (AUC), since in general a higher area implies a better ranking. A
perfect ranking would have an AUC of 1.0 (see the ‘Perfect’ line of Figure 2.30).
It is usually a good idea to look at the ROC curve as well as computing the

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original (AUC=84.7%)

Learned (AUC=85.6%)

Random (AUC=50.0%)

Perfect (AUC=100.0%)

Figure 2.30: Receiver Operating Characteristic curves for all skills combined for
the original model and the model with learned guess probabilities. Surprisingly,
the original model has only a slightly worse ROC curve than the improved one.
For comparison, curves for the best possible results (Perfect) and for a random
prediction (Random) are also shown.

102 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

AUC since it gives more detail about how well a system would work in different
scenarios, such as for making a short or long list.

Our improved system has a very respectable AUC of 0.86, substantially
improved log probability scores across all skills and has been visually checked
to give reasonable results. It would now be ready to be tried out for real.

2.6.4 Finishing up

In this chapter, we’ve gone through the process of building a model-based ma-
chine learning system from scratch. We’ve seen how to build a model from a set
of assumptions, how to run inference, how to diagnose and fix a problem and
how to evaluate results. As it happens, the model we have developed in this
chapter has been used previously in the field of psychometrics (the science of
measuring mental capacities and processes). For example, Junker and Sijtsma
[2001] consider two models DINA (Deterministic Inputs, Noisy And) which is
essentially the same as our model and NIDA (Noisy Inputs, Deterministic And)
which is a similar model but the AddNoise factors are applied to the inputs of
the And factor rather than the output. Using this second model has the effect
of increasing a person’s chance of getting a question right if they have some,
but not all, of the skills needed for the question.

Of course, there is always room for improving our model. For example, we
could learn the probability of making a mistake for each question, as well as the
probability of guessing the answer. We could investigate different assumptions
about what happens when a person has some but not all of the skills needed for a
question (like the NIDA model mentioned above). We could consider modelling
whether having certain skills makes it more likely to have other skills. Or
we could reconsider the simplifying assumption that the skills are binary and
instead model them as a continuous variable representing the degree of skill that
a person has. In the next case study, we will do exactly that and represent skills
using continuous variables, to solve a very different problem – but first, we will
have a short interlude while we look at the process of solving machine learning
problems.

Self assessment 2.6

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. [This exercise shows where the beta distribution shape comes from and is
well worth doing!] Suppose we have a question which has an actual guess
probability of 30%, but we do not know this. To try and find it out, we
take N = 10 people who do not have the skills needed for that question
and see how many of them get it right through guesswork.

(a) Write a program to sample the number of people that get the question
right (T). You should sample 10 times from a Bernoulli(0.3) and

2.6. LEARNING THE GUESS PROBABILITIES 103

count the number of true samples. Before you run your sampler,
what sort of samples would you expect to get from it?

(b) In reality, if we had the answers from only 10 people, we would have
only one sample count to use to work on the guess probability. For
example, we might know that three people got the question right,
so that T = 3. How much would this tell us about the actual guess
probability? We can write another sampling program to work it
out. First, sample a possible guess probability between 0.0 and 1.0.
Then, given this sampled guess probability, compute a sample of the
number of people that would get the question right, had this been
the true guess probability. If your sampled count matches the true
count T (in other words, is equal to 3), then you ‘accept it’ and store
the sampled guess probability. Otherwise you ‘reject it’ and throw it
away. Repeat the process until you have 10,000 accepted samples.

(c) Plot a histogram of the accepted samples using 50 bins between 0.0
and 1.0. You should see that the histogram has the shape of a beta
distribution!! In fact, your program is sampling from a Beta(T +
1, (N − T) + 1) distribution.

(d) Using this information, change N and T in your program to recreate
the beta distributions of Figure 2.24a. Explore what happens when
you increase N whilst keeping T/N fixed (your beta distribution
should get narrower). This should match the intuition that the more
people you have data for, the more accurately you can assess the
guess probability.

2. Plot a receiver operating characteristic curve for the results you got for
the original model in the previous self assessment. You will need to sort
the predicted skill probabilities whilst keeping track of the ground truth
for each prediction. Then scan down the sorted list computing the true
positive rate and false positive rate at each point. Verify that it looks like
the Original ROC curve of Figure 2.30. Now make a perfect predictor (by
cheating and using the ground truth). Plot the ROC curve for this perfect
predictor and check that it looks like the Perfect line of Figure 2.30. If
you want, you can repeat this for a random predictor (the results should
approximate the diagonal line of Figure 2.30).

Review of concepts introduced in this section

probability density function A function used to define the probability dis-
tribution over a continuous random variable. The probability that the variable
will take a value within a given range is given by the area under the probability
density function in that range. See Panel 2.4 for more details.

104 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

beta distribution A probability distribution over a continuous random vari-
able between 0 and 1 (inclusive) whose probability density function is

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
.

The beta distribution has two parameters α and β which control the position and
width of the peak of the distribution. The mean value α

α+β gives the position
of the centre of mass of the distribution and the sum α+β controls how spread
out the distribution is (larger α+ β means a narrower distribution).

evaluation metric A measurement of the accuracy of a machine learning
system used to assess how well the machine learning system is performing. An
evaluation metric can be used to compare two different systems, to compare
different versions of the same system or to assess if a system meets some desired
target accuracy.

log probability (or log-prob) The logarithm of the probability of the ground
truth value of a random variable, under the inferred distribution for that vari-
able. Used as an evaluation metric for evaluating uncertain predictions made by
a machine learning system. Larger log-prob values mean that the prediction is
better, since it gives higher probability to the correct value. Since the log-prob is
a negative number (or zero), it is common to use the negative log-prob, in which
case smaller values indicate better accuracy. For example, see Figure 2.29.

Goodhart’s law A law which warns about focusing too much on any partic-
ular evaluation metric and which can be stated as “When a measure becomes a
target, it ceases to be a good measure”.

true positive rate The fraction of positive items that are correctly predicted
as positive. Higher true positive rates indicate better prediction accuracy. See
also Table 2.7.

false positive rate The fraction of negative items that are incorrectly pre-
dicted as positive. Higher false positive rates indicate worse prediction accuracy.
See also Table 2.7.

receiver operating characteristic curve A receiver operating characteristic
(ROC) curve is a plot of true positive rate against false positive rate which
indicates the accuracy of predicting a binary variable. A perfect predictor has
an ROC curve that goes vertically up the left hand side of the plot and then
horizontally across the top (see plot below), whilst a random predictor has an
ROC curve which is a diagonal line (again, see plot). In general, the higher the
area under the ROC curve, the better the predictor.

calibration The accuracy of probabilities predicted by a machine learning
system. For example, in a well-calibrated system, a prediction made with 90%
probability should be correct roughly 90% of the time. Calibration can be
assessed by looking at repeated predictions by the same system. In a poorly-
calibrated system the predicted probabilities will not correspond closely to the

2.6. LEARNING THE GUESS PROBABILITIES 105

actual fractions of predictions that are correct. Being poorly calibrated is usu-
ally a sign of an incorrect assumption in the model and so is always worth
investigating – even if a system is being used in a way that is not sensitive to
calibration (for example, if we are ranking by predicted probability rather than
using the actual value of the probability). See Panel 4.3 for more details.

106 CHAPTER 2. ASSESSING PEOPLE’S SKILLS

Interlude: the machine
learning life cycle

In tackling our murder mystery back in chapter 1, we first gathered evidence
from the crime scene and then used our own knowledge to construct a proba-
bilistic model of the murder. We incorporated the crime scene evidence into the
model, in the form of observed variables, and performed inference to answer the
query of interest: what is the probability of each suspect being the murderer?
We then assessed whether the results of inference were good enough – that is,
was the probability high enough to consider the murder solved? When it was
not, we then gathered additional data, extended the model, re-ran inference and
finally reached our target probability.

In assessing skills of job candidates in chapter 2, we gathered data from
people taking a real test and visualised this data. We then built a model based
on our knowledge of how people take tests. We ran inference and assessed
that the results were not good enough. We diagnosed the problem, extended
the model and then evaluated both the original and the extended models to
quantify the improvement and check that the improved model met our success
criteria.

We can generalise from these two examples to define the steps needed for
any model-based machine learning application:

1. Gather data for training and evaluating the model.

2. Gather knowledge to help make appropriate modelling assumptions.

3. Visualise the data to understand it better, check for data issues and gain
insight into useful modelling assumptions.

4. Construct a model which captures knowledge about the problem do-
main, consistent with your understanding of the data.

5. Perform inference to make predictions over the variables of interest
using the data to fix the values of other variables.

6. Evaluate results using some evaluation metric, to see if they meet the
success criteria for the target application.

107

108 INTERLUDE

In the (usual) case that the system does not meet the success criteria the first
time around, there are then two additional steps needed:

7. Diagnose issues which are reducing prediction accuracy. Visualisation
is a powerful tool for bringing to light problems with data, models or in-
ference algorithms. Inference issues can also be diagnosed using synthetic
data sampled from the model (as we saw in chapter 2). At this stage,
is may also be necessary to diagnose performance issues if the inference
algorithm is taking too long to complete.

8. Refine the system – this could mean refining the data, model, visuali-
sations, inference or evaluation.

These two stages need to be repeated until the system is performing at a level
necessary for the intended application. Model-based machine learning can make
this repeated refinement process much quicker when using automatic inference
software, since it is easy to extend or modify a model and inference can then be
immediately applied to the modified model. This allows for rapid exploration
of a number of models each of which would be very slow to code up by hand.

The stages of this machine learning life cycle can be illustrated in a flow
chart:

Real-world
system

Yes

Inference

Evaluation Metrics
Good

enough?

Refinements to
data, model or

inference

No

Data Model
Visualise

Gather
knowledge

Gather
data

Done!

Debug &
diagnose

Queries

109

As we move on to our next case study, keep this life cycle flowchart in mind – it
will continue to be useful as a template for solving machine learning problems.

110 INTERLUDE

Chapter 3

Meeting Your Match

The Xbox Live R©online gaming service is used by tens of millions of
players around the world to play against each other in a wide variety
of games. Such a system must be able to match players with other
players of comparable skill level in order that they have an enjoyable
gaming experience. So how can we create an automated system to
match players of similar ability at a particular type of game?

One of the great advantages of the online world for gaming is the ready
availability of opponents at any time of day or night. An important requirement
for Xbox Live is the capability to find opponents with comparable skill levels,
in order that players have an enjoyable gaming experience, and so the system
must have a way of estimating the skills of players. However, this presents some
significant challenges – in particular, a game is not always won by the stronger
player. Many games involve an element of chance, and in a particular game
luck may favour the weaker player. More generally, a player’s performance can
vary from one game to the next, due to factors such as tiredness or fluctuating
enthusiasm. We therefore cannot assume that the winner of a particular game
has a higher skill level than the loser. On the other hand we do expect a stronger
player to win against a weaker player more often than they lose, so the game
outcome clearly gives us some information about the players’ relative skills.

111

112 CHAPTER 3. MEETING YOUR MATCH

Figure 3.1: Xbox Live R©provides a real-time matchmaking service for online gaming.

Another challenge concerns new players to the game. We have little idea
of their ability until we see the outcomes of some games. New players are not
always poor players – they may have played under different identities or have
experience of other similar games. Either way, it is essential to have reasonably
reliable assessments of their skills after only a few games so that they can be
matched against players of comparable skill. This ensures that new players have
a good gaming experience and so are more likely to continue to subscribe to
Xbox Live. Rapid assessment of skills is therefore important to the commercial
success of the service.

A final challenge arises when we have games played by teams of players.
We observe that one team wins and the other loses, and we must use this
information to learn about the skills of the individual players. At first it might
seem impossible to solve this ‘credit assignment’ problem. But we can make use
of the fact that, particularly in online games, the composition of teams changes
frequently and so over the course of multiple games we can disambiguate the
contributions of individual players to the successes and failures of the teams in
which they play.

We will need to work with the data available in Xbox Live, when doing
match-making amongst the players. Table 3.1 shows a sample of the kind of
data that we need to work with, in this case from the Xbox game Halo 2.

113

Player1 Player2 Player1Score Player2Score Outcome Id Variant

Gamer00123 Gamer00103 0 2 Player2Win 282203 Slayer

Gamer00044 Gamer00094 2 4 Player2Win 282201 Slayer

Gamer00139 Gamer00074 2 5 Player2Win 282205 Slayer

Gamer00095 Gamer00140 2 2 Draw 282211 Slayer

Gamer00120 Gamer00141 5 1 Player1Win 282209 Slayer

Gamer00142 Gamer00143 5 2 Player1Win 282208 Slayer

Gamer00144 Gamer00122 1 1 Draw 282212 Slayer

Gamer00116 Gamer00145 5 0 Player1Win 282207 Slayer

Table 3.1: Sample of the available data, showing ten games in the ‘Head to
Head’ variant of Halo2. The columns give the anonymized player ids, their
scores, the game outcome, the game id and the variant of the game that was
played.

So in summary, our goal is to use data of the above form to infer the skills
of individual players, in order to match players against others of a similar skill
level in future games. A secondary goal is to use the inferred skill levels in order
to create ‘leader boards’ showing the ranking of players within a tournament or
league. The system must also allow for the fact that players may play one-on-
one or may work together in teams. Furthermore, we must solve this problem
in a way that makes efficient use of the game outcome results so that we can
arrive at an accurate assessment of a player’s skill after observing a relatively
small number of games involving that player.

114 CHAPTER 3. MEETING YOUR MATCH

3.1 Modelling the outcome of games

Our goal is to build a system which can assess the skills of players in online
gaming. As a first step towards this, we need to look at the simpler problem
of predicting the outcome of a game where we already know the skills of the
players involved. This will allow us to develop many of the concepts required
to solve the more complex problem of determining skills.

Suppose that Jill is going to play a game of Halo against Fred on Xbox Live.
In chapter 2 we represented a person’s software development skills by using
a binary variable for each skill, indicating whether the person possessed that
particular skill or not. Clearly this approach is insufficient when we consider a
person’s skill at a typical Xbox game such as Halo. There is a wide spectrum
of possible skill levels, and it is more appropriate to represent a person’s skill
using a continuous value. The first of our modelling assumptions is therefore:

1 Each player has a skill value, represented by a continuous variable.

The stronger player is not always the winner.

We denote the skill of Jill by
Jskill and the skill of Fred by
Fskill. Let us suppose that Fred
has a skill level of Fskill = 12.5
while Jill has a skill of Jskill =
15. These numbers appear to be com-
pletely arbitrary, and the scale on
which we measure skill is indeed ar-
bitrary. What matters, however, is
how the skill values compare between
players, and we shall see in a moment
how to give meaning to such numbers.
We have given Jill a higher skill value
to indicate that she is the stronger
player. But now we run into the first
of our challenges, which is that the
stronger player in a game such as Halo is not always the winner. If Jill and
Fred were to play lots of games against each other we would expect Jill to win
more than half of them, but not necessarily to win them all. We can capture
the variability in the outcome of a game by introducing the notion of a perfor-
mance for each player, which expresses how well they played on a particular
game. The player with the higher performance for a specific game will be the
winner of that game. A player with a high skill level will tend to have a high
performance, but their actual performance will vary from one game to another.
As with skill, the performance is most naturally expressed using a continuous
quantity. We denote Jill’s performance by Jperf and Fred’s performance by
Fperf. Figure 3.2 shows Jperf plotted against Fperf. For points lying in the
region above the diagonal line Jill is the winner, while below the diagonal line
Fred is the winner.

3.1. MODELLING THE OUTCOME OF GAMES 115

Fred's Performance

0 10 20 30

-5

0

5

10

15

20

25

30

35

Jill Wins

Fred Wins

Figure 3.2: Schematic illustration of the values of Jill’s performance and Fred’s
performance showing the areas in which Jill would be the winner and in which
Fred would be the winner.

We can think of a person’s skill as their average performance across many
games. For example, Jill has a skill level of 15 so her performance will have an
average value of 15 but on a particular game it might be higher or lower. Once
again we have to deal with uncertainty, and we shall do this using a suitable
probability distribution. We anticipate that larger departures of performance
from the average will be less common, and therefore have lower probability,
than values which are closer to the average. Intuitively the performance should
therefore take the form of a ‘bell curve’ as illustrated in Figure 3.3 in which the
probability of a given performance value falls off on either side of the skill value.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

skill

Figure 3.3: Schematic illustration of a ‘bell curve’ showing how the performance
of a player can vary randomly around their skill value.

116 CHAPTER 3. MEETING YOUR MATCH

Because performance is a continuous quantity, this bell curve is an example
of a probability density, which we encountered previously in Panel 2.4. Al-
though we have sketched the general shape of the bell curve, to make further
progress we need to define a specific form for this curve. There are many pos-
sible choices, but there is one which stands out as special in having some very
useful mathematical properties. It is called the Gaussian probability density
and is the density function for the Gaussian distribution. In fact, the Gaus-
sian distribution has so many nice properties that it is one of the most widely
used distributions in the fields of machine learning and statistics. A particu-
lar Gaussian distribution is completely characterized by just two numbers: the
centre value of the distribution, known as the mean, and the standard devia-
tion, which determines how wide the curve is. These concepts are discussed in
more detail in Panel 3.1. Figure 3.4 shows a plot of the Gaussian distribution,
illustrating the interpretation of the mean and the standard deviation.

performance

-5 0 5 10 15 20 25 30 35

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.4: Plot of the Gaussian distribution having mean of 15 and standard
deviation of 5, showing the mean (red line) and the values which differ from the
mean by plus-or-minus one standard deviation (green lines). There is roughly
a 68.2% probability of a random variable with this distribution having a value
lying within one standard deviation of the mean (i.e. between the two green
lines), a 95.4% probability of the value lying within two standard deviations of
the mean (i.e. between 5 and 25), and a 99.7% probability of the value lying
within 3 standard deviations of the mean (i.e. between 0 and 30).

To understand the scale of the values on the vertical axis of Figure 3.4,
remember that the total area under a probability distribution curve must be
one. Note that the distribution is symmetrical about its maximum point –
because there is equal probability of being on either side of this point, the
performance at this central point is also the mean performance.

In standard notation, we write the mean as µ and the standard deviation
as σ. Using this notation the Gaussian density function can be written as

Gaussian(x;µ, σ2) =
1

(2π)1/2σ
exp

{
− (x− µ)2

2σ2

}
. (3.1)

3.1. MODELLING THE OUTCOME OF GAMES 117

The left hand side says that Gaussian(x;µ, σ2) is a probability distribution over
x whose value is dependent on the values of µ and σ. It is often convenient to
work with the square of the standard deviation, which we call the variance
and which we denote by σ2 (see Panel 3.1). We shall also sometimes use the
reciprocal of the variance τ = 1/σ2 which is known as the precision. For the
most part we shall use standard deviation since this lives on the same scale
(i.e. has the same units) as x.

Sometimes when we are using a Gaussian distribution it will be clear which
variable the distribution applies to. In such cases, we can simplify the notation
and instead of writing Gaussian(x;µ, σ2) we simply write Gaussian(µ, σ2). It
is important to appreciate that is simply a shorthand notation and does not
represent a distribution over µ and σ2.

Now let’s see how we can apply the Gaussian distribution to model a single
game of Halo between Jill and Fred. Figure 3.5 shows the Gaussian distributions
which describe the probabilities of various performances being achieved by Jill
and Fred in their Halo game. Here we have chosen the standard deviations of

performance

-5 0 5 10 15 20 25 30 35

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.5: Plot of the Gaussian distributions of performance for Jill and Fred.

the two Gaussians to be the same, with perfSD = 5 (where ’perfSD’ denotes
the standard deviation of the performance distribution). We shall discuss the
significance of this choice shortly. The first question we can ask is: “what is
the probability that Jill will be the winner?”. Note that there is considerable
overlap between the two distributions, which implies that there is a significant
chance that the performance value for Fred would be higher than that for Jill
and hence that he will win the game, even though Jill has a higher skill value.
You can also see that if the curves were more separated (for example, if Jill had
a much higher skill), then the chance of Fred winning would be reduced.

We have introduced two further assumptions into our model, and it is worth
making these explicit:

2 Each player has a performance value for each game, which varies from
game to game such that the average value is equal to the skill of that

118 CHAPTER 3. MEETING YOUR MATCH

Panel 3.1 – Mean, Variance, and Standard Deviation

Suppose we make multiple measurements of some quantity x, resulting in a set
of values x1, x2, . . . , xN . For example, we might measure the heights of adults in
the population. It can be very useful to summarise the properties of this set of
values by computing some simple statistics. One well-known statistic is called
the mean, and is defined by

mean =
x1 + x2 + . . .+ xN

N

=
1

N

N∑
n=1

xn. (3.2)

The mean is therefore simply the average of the values. Another useful statistic
is the variance which measures how much the values vary around the mean
value, and is defined by

variance =
(x1 − mean)2 + . . .+ (xN − mean)2

N

=
1

N

N∑
n=1

(xn − mean)2. (3.3)

If the heights of our adults are measured in metres, then the units of the mean
height would again be metres, whereas the variance would have the units of
metres-squared. It is usually more useful to measure variation from the mean
in the same units that we measure the mean in, and so we can instead use the
standard deviation, which is given by the square root of the variance

standard deviation =
√
variance. (3.4)

The standard deviation would then have the units of metres, and would be
a more easily interpretable quantity because it would tell us directly about
the variability of heights within the population. For example, in a particular
population of people the mean height might be 1.64 metres and the standard
deviation might be 0.35 metres.
There is an important connection between the statistics of a data set and the
parameters of the probability distribution that gave rise to that data set. Con-
sider the Gaussian distribution in equation (3.1). If we take a very large number
of samples from this distribution, then the mean and variance statistics of the
samples will be almost exactly equal to the mean and variance parameters of
the distribution (see Bishop [2006]). In fact, this is why the parameters of the
Gaussian distribution are called the ‘mean’ and ‘variance’ parameters. In gen-
eral, the statistics of a very large set of samples from any distribution can be
computed directly from the distribution’s parameters, without actually having
to do any sampling.

3.1. MODELLING THE OUTCOME OF GAMES 119

player. The variation in performance, which is the same for all players, is
symmetrically distributed around the mean value and is more likely to be
close to the mean than to be far from the mean.

3 The player with the highest performance value wins the game.

As written, assumption Assumption 2 expresses the qualitative knowledge that
a domain expert in online games might possess, and corresponds to a bell-shaped
performance distribution. This needs to be refined into a specific mathematical
form and for this we choose the Gaussian, although we might anticipate that
other bell-shaped distributions would give qualitatively similar results.

This is a good moment to introduce our first factor graph for this chapter. To
construct this graph we start with the variable nodes for each random variable
in our problem. So far we have two variables: the performance of Fred, which we
denote by the continuous variable Fperf, and the performance for Jill, denoted
by Jperf. Each of these is described by a Gaussian distribution whose mean is
the skill of the corresponding player, and with a common standard deviation of
5, and therefore a variance of 52:

p(Jperf) = Gaussian(Jperf; 15, 52)

p(Fperf) = Gaussian(Fperf; 12.5, 52). (3.5)

Note that, as in section 2.6, we are using a lower-case p to denote a probability
density for a continuous variable, and will use an upper-case P to denote the
probability distribution for a discrete variable.

The other uncertain quantity is the winner of the game. For this we can use
a binary variable JillWins which takes the value true if Jill is the winner and
the value false if Fred is the winner. The value of this variable is determined
by which of the two variables Jperf and Fperf is larger – it will be true is
Jperf is larger or otherwise false. Using T for true and F for false as before,
we can express this distribution by

P (JillWins = T|Jperf, Fperf) =

{
1 if Jperf > Fperf,

0 otherwise.
(3.6)

Since probabilities sum to one, we then have

P (JillWins = F|Jperf, Fperf) = 1− P (JillWins = T|Jperf, Fperf). (3.7)

We shall refer to the conditional probability in equation (3.6) as the GreaterThan
factor, which we shall denote the by ‘¿’ when drawing factor graphs. Note that
this is a deterministic factor since the value of the child variable is fixed if the
values of both parent variables are known. Using this factor, we are now ready to
draw the factor graph. This has three variable nodes, each with a corresponding
factor node, and is shown in Figure 3.6.

We asked for the probability that Jill would win this game of Halo. We can
find an approximate answer to this question by using ancestral sampling (which

120 CHAPTER 3. MEETING YOUR MATCH

Jperf Fperf

Jwins

Gaussian(15, 5²) Gaussian(12.5, 5²)

>

Figure 3.6: Basic model of performance difference between two players Fred and
Jill, having known skills, in a specific game.

was introduced back in subsection 2.5.1). To apply ancestral sampling in our
factor graph we must first sample from the parent variables Jperf and Fperf

and then compute the value of the child variable Jwins.
Consider first the sampling of the performance Jperf for Jill. There are

standard numerical techniques for generating random numbers having a Gaus-
sian distribution of specified mean and variance. If we generate five samples
from Gaussian(x; 15, 52) and plot them as a histogram we obtain the result
shown in Figure 3.7a. Note that we have divided the height of each bar in
the histogram by the total number of samples (in this case 5) and also by the
width of the histogram bins (in this case 10). This ensures that the total area
under the histogram is one. If we increase the number of samples to 50, as
seen in Figure 3.7b, we see that the histogram roughly approximates the bell
curve of a Gaussian. By increasing the number of samples we obtain a more
accurate approximation, as shown in Figure 3.7c for the case of 500 samples,
and in Figure 3.7d for 5,000 such samples. We see that we need to draw a
relatively large number of samples in order to obtain a good approximation to
the Gaussian. When using ancestral sampling we therefore need to use a lot of
samples in order to obtain reasonably accurate results. This makes ancestral
sampling computationally very inefficient, although it is a straightforward tech-
nique which provides a useful way to help understand the model or generate
synthetic datasets from the model.

Having seen how to sample from a single Gaussian distribution we can now
consider ancestral sampling from the complete graph in Figure 3.6 representing
a single game of Halo between Jill and Fred. We first select a performance Jperf
for Jill on this specific game, corresponding to the top-level variable node on
the factor graph, by drawing a value from the Gaussian distribution

p(Jperf) = Gaussian(Jperf; 15, 52). (3.8)

Independently, we choose a performance value Fperf for Fred, which is also a
top-level variable node, by drawing a sample from the Gaussian distribution

p(Fperf) = Gaussian(Fperf; 12.5, 52). (3.9)

3.1. MODELLING THE OUTCOME OF GAMES 121

We then compute the value of the remaining variable JillWins using these
sampled values. This involves comparing the two performance values, and if
Jperf is greater than Fperf then JillWins is true, otherwise JillWins is
false. If we repeat this sampling process many times, then the fraction of times
that JillWins is true gives (approximately) the probability of Jill winning a
game. The larger the number of samples over which we average, the more
accurate this approximation will be. Figure 3.8 shows a scatter plot of the
performances of our two players across 1,000 samples.

For each game we independently select the performance of each of our two
players by generating random values according to their respective Gaussian
distributions. Each of these games is shown as a point on the scatter plot. Also
shown is the 45-degree line along which the two performances are equal. Points
lying below this line represent games in which Fred is the winner, while points
lying above the line are those for which Jill is the winner. We see that the
majority of points lie above the line, as we expect because Jill has a higher skill
value. By simply counting the number of points we find that Jill wins 63.1% of
the time.

Of course this is only an approximate estimate of the probability of Jill

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a) 5 samples

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) 50 samples

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(c) 500 samples

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(d) 5,000 samples

Figure 3.7: Histograms of samples drawn from the Gaussian distribution with
mean of 15 and standard deviation of 5 shown in Figure 3.4.

122 CHAPTER 3. MEETING YOUR MATCH

Fred's Performance

0 10 20 30

-5

0

5

10

15

20

25

30

35

Jill Wins

63.1%

Fred Wins

36.9%

Figure 3.8: Samples of Jill and Fred’s performances overlaid on the schematic
illustration from Figure 3.2

winning. We can find the exact result mathematically [Moser, 2010] by making
use of the equation for the Gaussian distribution (3.1), which tells us that the
probability of Jill being the winner is given by

P (Jperf > Fperf|Jskill, Fskill) = CumGauss

(
Jskill− Fskill√

2perfSD

)
.

(3.10)
Here CumGauss denotes the cumulative Gaussian function which is illus-
trated in Figure 3.9

Using a numerical evaluation of this function we find that the probability of
Jill winning the game is 63.8%, which is close to the value (63.1%) we obtained
by ancestral sampling.

We noted earlier that the scale on which skill is measured is essentially
arbitrary. If we add a fixed constant onto the skills of all the players this would
leave the probabilities of winning unchanged since, from equation (3.10), they
depend only on the difference in skill values. Likewise, if we multiplied all
the skill values by the same constant, and at the same time we multiplied the
parameter perfSD by the same constant, then again the probabilities of winning
would be unchanged. All that matters is the difference in skill values measured
in relation to the value of perfSD.

We have now built a model which can predict the outcome of a game for
two players of known skills. In the next section we will look at how to extend
this model to go in the opposite direction: to predict the player skills given the
outcome of one or more games.

3.1. MODELLING THE OUTCOME OF GAMES 123

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

0.16

Figure 3.9: The blue curve shows a Gaussian distribution with mean of zero
and a standard deviation of one. The area under this Gaussian from −∞ up
to the point x is known as the cumulative Gaussian distribution and is shown,
as a function of x, by the red curve. For example, at x = −1 the area of the
shaded region has the value 0.16, as indicated.

Self assessment 3.1

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Write a program or create a spreadsheet which produces 10,000 samples
from a Gaussian with zero mean and a standard deviation of 1 (most
languages/spreadsheets have built in functions or available libraries for
sampling from a Gaussian). Compute the percentage of these samples
which lie between -1 and 1, between -2 and 2 and between -3 and 3. You
should find that these percentages are close to those given in the caption
of Figure 3.4.

2. Construct a histogram of the samples created in the previous exercise (like
the ones in Figure 3.7) and verify that it resembles a bell-shaped curve.

3. Compute the mean, standard deviation and variance of your samples,
referring to Panel 3.1. The mean should be close to zero and the standard
deviation and variance should both be close to 1 (since 12 = 1).

4. Produce a second set of 10,000 samples from a Gaussian with mean 1 and
standard deviation 1. Plot a scatter plot like Figure 3.8 where the X co-
ordinate of each point is a sample from the first set and the Y co-ordinate
is the corresponding sample from the second set (pairing the first sample
from each set, the second sample from each set and so on). Compute the
fraction of samples which lie above the diagonal line where X=Y.

5. Using Infer.NET, create double variables X and Y with priors of Gaussian(0,1)
and Gaussian(1 , 1) respectively. Define a third random variable Ywins

equal to Y > X. Compute the posterior distribution over Ywins and verify
that it is close to the fraction of samples above the diagonal in the previous
exercise.

124 CHAPTER 3. MEETING YOUR MATCH

Review of concepts introduced in this section

Gaussian distribution A specific form of probability density over a con-
tinuous variable that has many useful mathematical properties. It is governed
by two parameters – the mean and the standard deviation. The mathematical
definition of a Gaussian is given by equation (3.1)

mean The average of a set of values. See Panel 3.1 for a more detailed
discussion of the mean and related concepts.

standard deviation The square root of the variance.

variance A measure of how much a set of numbers vary around their average
value. The variance, and related quantities, are discussed in Panel 3.1.

precision The reciprocal of the variance.

statistics A statistic is a function of a set of data values. For instance the
mean is a statistic whose value is the average of a set of values. Statistics can
be useful for summarising a large data set compactly.

cumulative Gaussian function The value of the cumulative Gaussian func-
tion at a point x is equal to the area under a zero-mean unit-variance Gaussian
from minus infinity up to the point x. It follows from this definition that the gra-
dient of the cumulative Gaussian function is given by the Gaussian distribution.

3.2. INFERRING THE PLAYERS’ SKILLS 125

3.2 Inferring the players’ skills

The discussion so far has assumed that we know the skills of Jill and Fred.
These skills were then used to compute the probability that each of the players
would be the winner. In practice, we have to reason backwards: we observe the
outcome of the game and we wish to use this information to learn something
about the skill values of the players. We therefore turn to the problem of
assessing player skill.

The original Xbox was launched in 2001, and was followed a year later by an
online gaming service Xbox Live. This required a matchmaking feature which in
turn needed a way of determining the relative skills of players. To address this
requirement, the Xbox online service adopted a widely used algorithm called
Elo [Elo, 1978], which is used (with various modifications) by most of the major
international chess organizations as well as by representative bodies of many
other sports. The Elo algorithm is summarized in Panel 3.2.

The Elo algorithm is widely used in chess.

One merit of the Elo system is that
it is relatively easy for players to com-
pute the skill updates for themselves.
In Xbox Live, however, the skill calcu-
lations are automated – and so more
complex but more accurate methods
become possible. Furthermore, the
Elo algorithm does not handle more
than two players, nor does it apply
to games played by teams of players,
and so it was not directly applicable
to many of the games on Xbox Live.
There was a significant motivation,
therefore, to find improved methods
to assess player skills which are able
to give accurate skill values after rel-
atively few games have been played.
When the successor games console the Xbox 360 was launched in 2005 it was
decided to replace the Elo algorithm with an approach built on a probabilistic
model of the skill assessment problem, known as the TrueSkill R©system [Her-
brich et al., 2007]. TrueSkill has been used as the skill rating and matchmaking
system on Xbox Live continuously since 2005, processing the outcomes of mil-
lions of games per day. As well as overcoming the above limitations of the Elo
system, the modelling of uncertainty in the players’ skills in TrueSkill leads to
a significant improvement in the efficiency with which skill is assessed [Herbrich
et al., 2007]. In the remainder of this chapter we explain how the TrueSkill
model was constructed. For more details of the mathematics behind TrueSkill
see Moser [2010].

126 CHAPTER 3. MEETING YOUR MATCH

Panel 3.2 – The Elo Algorithm

The skill of a player is an uncertain quantity and so we should model this using a probability distribution.
However, it is instructive to see first what happens if we simply treat the skill as a number whose value gets
updated when we learn the outcome of a game. We will see how far we can get, and what sort of problems we
encounter, and this will help us understand some of the benefits of using a model-based approach.
Given the outcome of a game it would seem reasonable to increase the skill value for the winner and decrease the
skill value for the loser. What is less clear, however, is how big an adjustment we should make. Intuitively we
can reason as follows. Suppose that Jill is the winner of the game. If Jill’s skill is significantly higher than Fred’s,
then it is unsurprising that Jill should be the winner, and so the change in skill values should be relatively small.
If the skills are similar then a larger change would be justified. However, if Jill’s skill is significantly less than
Fred’s then the game outcome is very surprising. The outcome suggests that our current assessments of the skill
values are not very accurate, and therefore that we should make a much larger adjustment in skill values. Put
concisely, the degree of surprise gives an indication of how big a change in skill values should be made.
Let us define the winner of a game to have a score of 1 and the loser to have a score of 0. If we now imagine
Jill and Fred playing lots of games against each other then the average score for Jill after playing lots of games
against Fred is the same as the probability that she will win. This can be obtained from equation (3.10), and is
given by [Elo, 1978]:

Jscore = CumGauss

(
Jskill− Fskill√

2perfSD

)
(3.11)

where, as before, perfSD is an arbitrary constant which sets the scale of the skill variables. We refer to this
average score as the expected score for Jill. Similarly, the expected score for Fred is (1− Jscore). We can then
define the degree of surprise as the difference between the actual score of a player against a particular opponent
and the expected score for that game. Thus, if it turns out that Jill is the winner, then the surprise for Jill is
(1 − Jscore) while for Fred it is 0 − (1 − Jscore). The change in skill value can then be made proportional to
this degree of surprise, so that

Jskill(new) = Jskill +K(1− Jscore) (3.12)

Fskill(new) = Fskill +K(0− (1− Jscore))

= Fskill−K(1− Jscore) (3.13)

Here K is an arbitrary coefficient which determines how much the players skills change as a result of each game.
Elo has some limitations which are relevant to our matchmaking problem. For instance, it does not apply to
team games, or to games involving more than two players. Furthermore, because Elo is an algorithm, rather
than a model, it is not immediately obvious how it should be modified in order to overcome such limitations.
By contrast, in our probabilistic modelling approach, when the assumptions of the model are not satisfied, we
change the assumptions and then construct the corresponding modified model. We shall see how to do this in
practice in section 3.4.

3.2. INFERRING THE PLAYERS’ SKILLS 127

3.2.1 A probabilistic model: TrueSkill

We have already noted that skill is an uncertain quantity, and should therefore
be included in the model as a random variable. We need to define a suitable
prior distribution for this variable. This distribution captures our prior knowl-
edge about a player’s skill before they have played any games. Since we know
very little about a player before they play any games, this distribution needs
to be broad and cover the full range of skills that a new player might have.
Because skill is a continuous variable we can once again use a Gaussian distri-
bution to define this prior. This represents a modification to our first modelling
assumption, which becomes:

1 Each player has a skill value, represented by a continuous variable with a
broad prior distribution.

For a new player, this distribution will represent our (significant) uncertainty
in their skill value. Again, we make this modelling assumption precise through
the choice of a Gaussian distribution. Once a new player has played a game, we
aim to use the outcome of the game to infer the updated skill distribution for
the player (and also for any other players in the game). This involves solving
a probabilistic inference problem to calculate the posterior distribution of each
player’s skill, taking account of the new information provided by the result
of the game. Although the prior distribution is Gaussian, the corresponding
posterior distribution may not be Gaussian. However, we shall see that there
is considerable benefit in approximating the exact posterior distribution by a
Gaussian. This Gaussian posterior will act as the effective prior distribution for
the next game played by that player. We will discuss this idea in greater detail
later in the chapter.

For the moment, let us return to our game of Halo between Jill and Fred.
We will suppose that some games have already been played, and that the uncer-
tainty in the skills of our two players are represented by Gaussian distributions.
Earlier in this chapter we used skill values for Jill and Fred of 12.5 and 15
respectively, which are quite small in relation to the standard deviation in per-
formance of 5, and therefore help to illustrate the influence of these quantities
on the probability of a win for Jill. For the remainder of the chapter we shall use
values which are more realistic for a pair of real players and so we assume the
mean for Jill is 120 while that for Fred 100. We will also suppose that standard
deviation of the skill distribution for Jill is 40, while for Fred it is 5. This would
typically arise if Jill is a relatively new player and so there is a lot of uncertainty
in her skill whereas Fred is a more established player whose skill is more pre-
cisely known. We must therefore extend our model for a specific game of Halo
by introducing two more uncertain variables Jskill and Fskill: the skills of
Jill and Fred. Each of these variables has its own Gaussian distribution and
therefore its own factor in the factor graph. The factor graph for our extended
model is shown in Figure 3.10.

At this point it is convenient to summarise the assumptions that are en-
coded in the model represented in Figure 3.10. They are all shown together in

128 CHAPTER 3. MEETING YOUR MATCH

Figure 3.11.

1 Each player has a skill value, represented by a continuous variable
with a broad Gaussian distribution.

2 Each player has a performance value for each game, which varies
from game to game such that the average value is equal to the skill
of that player. The variation in performance, which is the same for
all players, is symmetrically distributed around the mean value and
is more likely to be close to the mean than to be far from the mean.

3 The player with the higher performance value wins the game.

Figure 3.11: The three assumptions encoded in our model.

Having stated our modelling assumptions explicitly, it is worth taking a mo-
ment to review them. Assumption 1 says that a player’s ability at a particular
type of game can be expressed as a single continuous variable. This seems rea-
sonable for most situations, but we could imagine a more complex description of
a player’s abilities which, for example, distinguishes between their skill in attack
and their skill at defence. This might be important in team games (discussed
later) where a strong team may require a balance of players with strong attack
skills and those with good defensive skills. We also assumed a Gaussian prior
for the skill variable. This is the simplest probabilistic model we could have for
a continuous skill variable, and it brings some nice analytical and engineering
properties. However, if we looked at the skills of a large population of players

Jskill Fskill

Jperf Fperf

Jwins

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.10: TrueSkill model for two players in a game, with unknown skills.
Here we have used the notation Gaussian(·, 52) to describe a factor whose dis-
tribution is Gaussian with a mean given by the parent variable, in this case the
corresponding skill variable, and a standard deviation of 5.

3.2. INFERRING THE PLAYERS’ SKILLS 129

we might find a rather non-Gaussian distribution of skills, for example, new
players may often have low skill but, if they have played a similar game before,
may occasionally have a high skill.

Similarly, Assumption 2 considers a single performance variable and again
assumes it has a Gaussian distribution. It might well be the case that players
can sometimes have a seriously ‘off’ day when their performance is way be-
low their skill value, while it would be very unlikely for a player to perform
dramatically higher than their skill value. This suggests that the performance
distribution might be non-symmetrical. Another aspect that could be improved
is the assumption that the variance is the same for all players – it is likely that
some players are more consistent than others and so would have correspondingly
lower variance.

Finally, Assumption 3 says that the game outcome is determined purely by
the performance values. If we had introduced multiple variables to characterize
the skill of a player, there would presumably each have a corresponding perfor-
mance variable (such as how the player performed in attack or defence), and we
would need to define how these would be combined in order to determine the
outcome of a game.

3.2.2 Inference in the TrueSkill model
Inference

Inference deep-dive
In this optional section, we see how to do exact inference in the model as defined
so far, and then we see why exact inference is not useable in practice. If you
want to focus on modelling, feel free to skip this section.

Now that we have the factor graph describing our model, we can set the vari-
able Jwins according to the observed game outcome and run inference in order
to compute the marginal posterior distributions of the skill variables Jskill

and Fskill. The graph has a tree structure (there are no loops) and so we have
already seen in chapter 2 that we can solve this problem using belief propaga-
tion.

Consider the evaluation of the posterior distribution for Jskill in the case
where Jill won the game (Jwins is true). Using the belief propagation algorithm
we have to evaluate the messages shown in Figure 3.12. Message (1) is just given
by the Gaussian factor itself. Similarly, message (2) is just the product of all
incoming messages on other edges of the Fskill node, and since there is only
one incoming message this is just copied to the output message. These first two
messages are summarized in Figure 3.13.

Next we have to compute message (3) in Figure 3.12. The belief propagation
algorithm tells us to multiply the incoming message (2) by the Gaussian factor
and then sum over the variable Fskill. In this case the summation becomes
an integration because Fskill is a continuous variable. We can gain some
insight into this step by once again considering a generative viewpoint based on
sampling. Imagine that we draw samples from the Gaussian distribution over
Fskill. Each sample is a specific value of Fskill and forms the mean of a
Gaussian distribution over Fperf. In Figure 3.14a we consider three samples

130 CHAPTER 3. MEETING YOUR MATCH

(5)

(9)

(8)

(1)

(2)

(7)

(6)

(3)

(4)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.12: The messages which arise in the application of belief propagation
to the evaluation of the updated distribution for Jskill.

of Fskill and plot the corresponding distributions over Fperf. To compute
the desired outgoing message we then average these samples, giving the result
shown in Figure 3.14b. This represents an approximation to the marginalization
over Fskill, and would become exact if we considered an infinite number of
samples instead of just three.

The sampling approximation becomes more accurate as we increase the num-
ber of samples, as shown in Figure 3.14c and Figure 3.14d. In this final figure
the resulting distribution looks almost Gaussian. This is not a coincidence, and
in fact the calculation of the outgoing message can be worked out exactly (see
Equation (2.115) in Bishop [2006]) with the result that the outgoing message
is also a Gaussian whose mean is the mean of the distribution of Fskill and
whose variance is the sum of the variances of Fskill and Fperf: 52 + 52. This
process of ‘smearing’ out one Gaussian using the other Gaussian is an example
of a mathematical operation called convolution. Message (4) is just a copy of
message (3) as there is only one incoming message to the Fperf node. These
messages are illustrated in Figure 3.15.

Message (5) in Figure 3.12 is just the Bernoulli distribution with its prob-
ability mass concentrated on the value true. To compute message (6) we take
the GreaterThan factor, multiply by the two incoming messages, and then sum
over Jwins and integrate over Fperf. Since we are considering the case where

3.2. INFERRING THE PLAYERS’ SKILLS 131

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.13: Messages (1) and (2) in the application of belief propagation to the
evaluation of the updated distribution for Jskill.

Jill is the winner, message (5) evaluates to zero for Jwins = false and one
for Jwins = true. The sum over Jwins then multiplies by zero those regions
of the performance space which correspond to Fred being the winner. This is
illustrated in Figure 3.16 which shows the result of multiplying the GreaterThan
factor by the two incoming messages and then summing over Jwins.

Finally we have to integrate over Fperf in order to generate the outgoing
message (6) which itself is a function of Jperf. This message is shown in Fig-
ure 3.17. The reader should take a moment to confirm that shape of this func-
tion is what would be expected from integrating Figure 3.16 over the variable
Fperf. Mathematically, for each value of Jperf a truncated Gaussian distribu-
tion is being integrated, this is equivalent to the evaluation of the cumulative
Gaussian that we introduced back in equation (3.10), and so this message can
be evaluated analytically (indeed, this is how Figure 3.17 was plotted).

We can also understand this message intuitively. Suppose we knew that
Fperf was exactly 100, given that Jill won, this tells us that Jill’s performance
Jperf must be some number greater than 100. This would mean a message in
the form of a step, with the value zero below 100 and some positive constant
above it. Since, we don’t know that Fperf is exactly 100, but only know that
it is likely to be near 100, this smears out the step into the smooth function of
Figure 3.17.

132 CHAPTER 3. MEETING YOUR MATCH

x

80 85 90 95 100 105 110 115 120 125

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) 3 samples

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(b) 3 samples (averaged)

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(c) 6 samples (averaged)

x

70 80 90 100 110 120 130

0.000

0.010

0.020

0.030

0.040

0.050

(d) 100 samples (averaged)

Figure 3.14: Illustration of the sampling approximation to the computation of
message (3) in Figure 3.12. Panel (a) shows three Gaussians whose means have
themselves been sampled from Gaussian(100, 52), while panel (b) shows the
average of these three samples. As we increase the number of samples, so the
average gets progressively closer to being Gaussian, as seen in panels (c) and
(d).

Message (7) is just a copy of message (6) since there is only one incom-
ing message to the Jperf node. These messages are illustrated in Figure 3.18
Message (8) is found by multiplying the Gaussian factor describing the perfor-
mance variability by the incoming message (7) and then integrating over Jperf.
This again is a convolution, and has an exact solution again in the form of a cu-
mulative Gaussian. Effectively it is a blurred version of the incoming cumulative
Gaussian message which has been smeared out by the variance of the Gaussian
performance factor. Finally, message (9) is the prior Gaussian distribution given
by the skill factor itself. These messages are summarized in Figure 3.19.

To obtain the marginal distribution of Jskill we then multiply messages (8)
and (9). Because this is the product of a Gaussian and a cumulative Gaussian
the result is a bump-like distribution but it is not symmetrical and therefore
is not a Gaussian. These messages, and the resulting marginal distribution for
Jskill, are shown in Figure 3.20.

http://en.wikipedia.org/wiki/Erf_function#Integral_of_error_function_with_Gaussian_density_function

3.2. INFERRING THE PLAYERS’ SKILLS 133

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.15: Messages (3) and (4) in the application of belief propagation to the
evaluation of the updated distribution for Jskill.

Figure 3.16: Plot of the result of multiplying the GreaterThan factor by mes-
sages (4) and (5) and then summing over message (5). Note that this plot rep-
resents an un-normalized distribution, and so no vertical scale has been shown.

134 CHAPTER 3. MEETING YOUR MATCH

Jperf

-40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Figure 3.17: The exact Belief Propagation message (6) from the GreaterThan
factor to the Jperf variable, which is given by a cumulative Gaussian.

(5) Bern(1.0)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(6) CumGauss((x - 100)/5√2)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(7) CumGauss((x - 100)/5√2)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.18: Messages (5), (6), and (7) in the application of belief propagation
to the evaluation of the updated distribution for Jskill.

3.2. INFERRING THE PLAYERS’ SKILLS 135

(5) Bern(1.0)

(8) CumGauss(•)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(7) CumGauss((x - 100)/5√2)

(6) CumGauss((x - 100)/5√2)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(9) Gaussian(120, 40²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.19: Messages (8) and (9) in the application of belief propagation to the
evaluation of the updated distribution for Jskill.

Jskill

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Figure 3.20: Plot of the exact message (8) in blue, the exact message (9) in red.
Also shown in green is the product of these two messages, which gives the exact
marginal over Jskill. Note that this exact marginal is non-Gaussian.

136 CHAPTER 3. MEETING YOUR MATCH

3.2.3 A problem with using exact inference

We seem to have solved the problem of finding the posterior distribution for
Jskill. Clearly, we can also pass messages in the opposite direction around
the graph to obtain the corresponding posterior distribution for Fskill. These
posterior distributions can be expressed exactly as the product of a Gaussian
and a cumulative Gaussian. However, there is a major problem which becomes
apparent if we imagine, say, Jill going on to play another game with a new
player. Before the game with Fred, our uncertainty in the value of Jskill

was expressed as a Gaussian distribution, which has two parameters (the mean
and the variance). After she has played against Fred the corresponding posterior
distribution is expressed as the product of a Gaussian and a cumulative Gaussian
and therefore has four parameters, where the two additional parameters come
from the cumulative Gaussian. Now suppose that Jill plays another game of
Halo against Alice. We can again represent this by a factor graph similar to
Figure 3.10, except that the factor describing our current uncertainty in Jskill

is now the posterior distribution resulting from the game against Fred. When
we run inference in this new graph, to take account of the outcome of the
game against Alice, the new posterior marginal will be given by the product of
messages into the node Jskill and will therefore consist of the original product
of a Gaussian and a cumulative Gaussian times another cumulative Gaussian
resulting from the game with Alice. This gives a posterior distribution for
Jskill which now has six parameters. Each time Jill plays a game of Halo the
distribution over her skill value requires two additional parameters to represent
it, and the number of parameters continues to grow as she plays more and
more games. Clearly this is not a practical framework to use in an engineering
application.

Notice that this problem would not arise if the posterior distribution for
the variable of interest had the same form as the prior distribution. In some
probabilistic models we are able to choose a form of prior distribution, known as
a conjugate prior, such that the posterior ends up having the same form as the
prior. For example, suppose we have a model containing a random variable x

for the probability-of-true parameter of a Bernoulli distribution. The conjugate
prior for x is then the beta distribution, as explained in more detail in Panel 3.3.
In our TrueSkill model, the presence of the GreaterThan factor, means that
the Gaussian is not a conjugate distribution for Jskill. We must therefore
introduce some form of approximation. In the next section, we will describe a
powerful algorithm that extends belief propagation by allowing messages to be
approximated even when they are not conjugate. This algorithm will not only
solve the inference problem with this model, but turns out to be applicable to
a wide variety of other probabilistic models as well.

Self assessment 3.2

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

3.2. INFERRING THE PLAYERS’ SKILLS 137

Panel 3.3 – Conjugate Distribution Example

We can illustrate the idea of a conjugate distribution by considering the following
example. Suppose we are selling items through a web page and we want to know
the probability that a user will click on the ‘buy’ button. Let us denote this
probability by x. The probability that they won’t click is then 1 − x. Note
that this is just the Bernoulli distribution that we saw in chapter 1. Suppose
we collect data from multiple visitors to our web page, and we find that N of
them click on the button and M of them do not. If we assume that the visits
to the web page are independent, then the conditional probability of seeing this
data, given the value of x, is obtained by multiplying the probabilities of each
click/non-click event, so that

P (data|x) = xN (1− x)M . (3.14)

If we wish to learn the value of x from this data, we need to define a prior
probability density p(x). There is a particular form for this prior which makes
the calculation especially easy, namely if we choose p(x) to have the form

p(x) ∝ xA(1− x)B (3.15)

where A and B are parameters. In this case the corresponding posterior distri-
bution is then, from Bayes’ rule,

p(x|data) ∝ P (data|x)p(x)

∝ xA+N (1− x)B+M (3.16)

and so the posterior distribution has the same functional form as the prior
distribution, but with A replaced by A + N and B replaced by B + M . The
prior distribution (3.15) is said to be conjugate to the Bernoulli distribution. In
fact, you can see that this is exactly the beta distribution that we introduced
in section 2.6.
There are many other examples of conjugate distributions [Bishop, 2006]. For
instance, the conjugate prior for the mean of a Gaussian is just another Gaus-
sian, while the conjugate prior for the precision of a Gaussian is called a Gamma
distribution, which we will meet in chapter 4. For the simple murder mystery of
chapter 1 the prior distribution was a Bernoulli, which is conjugate to the con-
ditional distribution representing the probability of the murder weapon given
the identity of the murderer.
When running inference on a factor graph, we can think of conjugacy as a
local property between pairs of nodes. To prevent message complexity from
growing, we will need to find an approximation to an outgoing message whenever
we have a non-conjugate relationship between a parent distribution and the
corresponding child distribution.

138 CHAPTER 3. MEETING YOUR MATCH

1. Reproduce Figure 3.14 by plotting the average of K Gaussian distributions
each with standard deviation is 5 and with mean is given by a sample from
a Gaussian(100, 52). Do this for K = 3,K = 6 and K = 100.

2. Referring to Panel 3.3, use Bayes’ theorem to compute the posterior dis-
tribution over x (the probability of clicking on the buy button) given that
N = 20 people do click on the button but M = 100 people do not click on
it. Assume a Beta(1, 1) prior distribution. Notice that this is a conjugate
prior and so the posterior distribution is also a beta distribution.

3. [Advanced] Show that the convolution of two Gaussian distributions is also
a Gaussian distribution whose variance is the sum of the variances of the
two original distributions. Section 2.3.3 in Bishop [2006] should help.

Review of concepts introduced in this section

convolution The convolution of a function f with a function g measures the
overlap between f and a version of g which is translated by an amount a. It is
expressed as a function of a.

conjugate For a given likelihood function, a prior distribution is said to be
conjugate if the corresponding posterior distribution has the same functional
form as the prior.

3.3. A SOLUTION: EXPECTATION PROPAGATION 139

3.3 A solution: expectation propagation
Inference

Inference deep-dive
In this optional section, we introduce the approximate inference technique of
expectation propagation, which we will use extensively in this book. If you
want to focus on modelling, feel free to skip this section.

We have seen that belief propagation allows us to calculate the exact marginal
posterior distribution for the variable Jskill in the model described by Fig-
ure 3.10. Whereas the prior distribution for Jskill is a Gaussian described
by two parameters, the posterior distribution requires four parameters and is
non-Gaussian. To solve the problem of the proliferation of parameters we now
need a way to approximate this true posterior by a distribution having a fixed
number of parameters, and for this we choose the Gaussian. The posterior dis-
tribution will then have the same functional form as the prior, mimicking the
behaviour of a conjugate prior. If we can achieve this, we will be able to treat
the resulting approximate posterior distribution as the prior distribution for the
next game. Then the skill for each player will at all times be represented by a
Gaussian distribution governed by just two parameters.

The first question is how to approximate a non-Gaussian distribution by
a Gaussian. A simple solution is to find the mean and the variance of the
non-Gaussian distribution and then to choose as our approximation a Gaussian
having the same mean and variance. This turns out to be a sensible approxima-
tion, which can be derived formally by optimizing a measure of the dissimilarity
of two probability distributions [Bishop, 2006; Minka, 2005].

We might be tempted then just to approximate the exact posterior distri-
bution for Jskill by a Gaussian. Although this will work satisfactorily for the
factor graph of Figure 3.10 it will break down again as we go to more complex
factor graphs (such as those we will encounter later in this chapter). Messages
with simple functional forms tend to become more complex as a result of pass-
ing through factors. As we extend our model to larger and more sophisticated
graphs we quickly arrive at situations where messages cannot be evaluated ex-
actly. Such problems can be avoided by making our approximations locally at
each factor node, so that all messages have the desired distribution type. This
ensures that factors can be composed together into arbitrary graphs, as long as
each factor is capable of sending approximate messages to all neighbouring vari-
able nodes using the appropriate types of distribution. Returning to Figure 3.12
(which is reproduced in Figure 3.21 for convenience), we see that message (6)
was the first message that we encountered which was non-Gaussian. Our goal
is therefore to approximate message (6) by a Gaussian, thereby ensuring that
all subsequent messages will also be Gaussian distributions.

While this seems like a desirable goal, there also seems to be a significant
obstacle – the exact form of message (6) as seen in Figure 3.17 does not look
at all Gaussian! In fact, its mean and variance are not even well defined (they
are both infinite). The key to finding a sensible Gaussian approximation is
to notice that the approximate version of message (6) will subsequently be
passed through the graph as modified forms of messages (7) and (8) and will

140 CHAPTER 3. MEETING YOUR MATCH

(5)

(9)

(8)

(1)

(2)

(7)

(6)

(3)

(4)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.21: The messages which arise in the application of belief propagation
to the evaluation of the updated distribution for Jskill. (Reproduced from
Figure 3.12.)

then be multiplied by the downward message (9) in order to determine the
(approximate) posterior distribution of Jskill. Our goal will therefore be to
make the Gaussian approximation to message (6) over Jperf be most accurate
in those regions which are considered more probable by the information coming
from other parts of the graph. As we have just discussed, however, we need
to keep our approximation local to the region of the graph where the message
is generated. Message (6) is sent to the node Jperf and so we can choose our
approximation so as to maximize the accuracy of the marginal distribution of
Jperf. This is obtained by multiplying message (6) by the downward message
on the same edge in the graph, which can be evaluated as shown in Figure 3.22.
Note that these same messages are needed to find the posterior marginal for
Fskill, so there is no additional overhead introduced by evaluating them.

Let’s consider the piece of the factor graph close to the Jperf node in more
detail, as seen in Figure 3.23. Here e denotes the exact message (6) as seen pre-
vious in Figure 3.20, c denotes the downward ‘context’ message, and g denotes
our desired Gaussian approximation to message e. These messages are all just
functions of the variable Jperf. We have already seen that we cannot simply
approximate message e by a Gaussian since message e has infinite mean and
variance. Instead we make a Gaussian approximation for the marginal distribu-

3.3. A SOLUTION: EXPECTATION PROPAGATION 141

Gaussian(120, 40²)

Gaussian(120, 40²)

Gaussian(120, 40² + 5²)

Gauss(120, 40² + 5²)

(6)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.22: Evaluation of the context message that will be used to find a
Gaussian approximation for message (6).

tion of Jperf. The exact marginal is given by the product of incoming messages
ce. We therefore define our approximate message g to be such that the product
of the messages c and g gives a marginal distribution for Jperf which is a best
Gaussian approximation to the true marginal, so that

cg = Proj (ce) . (3.17)

Here Proj() denotes ‘projection’ and represents the process of replacing a non-
Gaussian distribution with a Gaussian having the same mean and variance.
This can be viewed as projecting the exact message onto the ‘nearest’ message
within the family of Gaussian distributions. Dividing both sides by c we then
obtain

g =
Proj (ce)

c
. (3.18)

Details of the mathematics of how to do this are discussed in Herbrich et al.
[2007] and Moser [2010].

We therefore find a Gaussian approximation g to the exact e message (6)
as follows. First we compute the exact outgoing message (6) as before. This is
shown in blue in Figure 3.24. Then we multiply this by the incoming message
context message c which is shown in red in Figure 3.24. This gives a distribu-
tion, shown in green in Figure 3.24 which is non-Gaussian but which is localised

142 CHAPTER 3. MEETING YOUR MATCH

c

e (CumGauss)

Jwins=T

Jperf

Gaussian(•, 5²)

>

(a)

c

g (Gaussian)

Jwins=T

Jperf

Gaussian(•, 5²)

>

(b)

Figure 3.23: Detail of the factor graph around the Jperf node, showing the
messages involved (a) when running belief propagation (b) when making a local
Gaussian approximation to the upward message from the GreaterThan factor.

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 3.24: Plot of the exact outgoing message (6) in blue, the incoming Gaus-
sian context message in red, and the product of these two messages in green.

and therefore has finite mean and variance and so can be approximated by a
Gaussian. This curve is repeated in Figure 3.25 which also shows the Gaussian
distribution which has the same mean and variance. Finally, we divide this
Gaussian distribution by the incoming context message c to generate our ap-
proximate outgoing g message. Because both of these functions are Gaussian,
and because the ratio of two Gaussians is itself a Gaussian [Bishop, 2006], the

3.3. A SOLUTION: EXPECTATION PROPAGATION 143

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 3.25: The product, shown in green, of the true belief propagation and
incoming context messages as in Figure 3.24, together with the Gaussian ap-
proximation, shown in orange.

resulting outgoing message will be Gaussian, which was our original goal. For
our specific example, this message is a Gaussian with mean 160.4 and standard
deviation 40.2. The computation of the approximate message is summarised in
Figure 3.26.

We see that overall we multiplied by the incoming context message, then
made the Gaussian approximation, then finally divided out the context message
again. The evidence provided by the incoming message is therefore used only
to determine the region over which the Gaussian approximation should be ac-
curate, but is not directly incorporated into the approximated message. If we
happened to have a conjugate distribution, then the projection operation would
be unnecessary and the context message would have no effect.

This approach of using an incoming message to provide the context in which
to approximate the corresponding outgoing message is known as expectation
propagation (or EP). We see that the approximation is being made locally at
the factor node, and in a way that is independent of the structure of the remain-
der of the graph. This technique can therefore be applied, without modification,
to arbitrarily structured graphs as long as each factor is consistently sending and
receiving messages with the required distribution types, in this case Gaussians.
The expectation propagation algorithm is summarised in algorithm 3.1.

Now that we have found a suitable Gaussian approximation to the outgo-
ing message (6) we can continue to pass messages along the graph to give the
corresponding approximate message (7) as shown in Figure 3.27.

Evaluation of the new (approximate) version of message (8) again involves
the convolution of a Gaussian with a Gaussian, with the result shown in Fig-
ure 3.28. The downward message (9) is unchanged, and so we can finally com-
pute the Gaussian approximation to the posterior distribution of Jskill as the

144 CHAPTER 3. MEETING YOUR MATCH

Jperf

-50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 3.26: The steps involved in computing the Gaussian approximation to
message (6). The blue curve shows the exact message (6), the red curve shows
the incoming Gaussian context message, the orange curve shows the Gaussian
approximation to the product of true message and context message, and the
purple curve shows the result of dividing the orange curve by the red context
message. This purple curve represents the outgoing Gaussian approximation for
message (6).

product of two Gaussians, which gives the final result of a Gaussian with mean
140.1 and standard deviation 28.5.

3.3.1 Applying expectation propagation

Let’s see what happens to the skill distributions when we apply expectation
propagation to our game of Halo between Jill and Fred. First we suppose that
Jill is the winner of the game. In Figure 3.29 we see the prior and posterior
distributions of skill for Jill and Fred. Because Jill is the winner, the mean of the
skill distribution for Jill increases, while the mean of the skill distribution for
Fred decreases. The increase in mean is quite large for Jill, whereas the mean
for Fred hardly decreases at all. This difference is due to the greater certainty
in Fskill compared to that for Jskill. Intuitatively we are using the known
skill of Fred to estimate the skill of Jill. This is a crucial difference compared
to Elo, where the changes in skill estimates are equal and opposite for the two
players. This difference arises because we are modelling the uncertainty in each
player’s skill rather than using a point estimate as in Elo. We also see from
Figure 3.29 that the standard deviation for Jill’s skill distributions decreases as
a result of this game. This is because we have learned something about her skill
and therefore the degree of uncertainty is reduced.

Alternatively, if Fred were to have won the game, we have the results shown

3.3. A SOLUTION: EXPECTATION PROPAGATION 145

Algorithm 3.1: Expectation Propagation

Input: factor graph, list of target variables to compute marginals for,
message-passing schedule, initial message values (optional),
choice of approximating distributions for each edge.

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Variable node message: the product of all messages received on
the other edges;
- Factor node message: Compute the belief propagation message
(see algorithm 2.1). Multiply by the context message (the message
coming towards the factor on this edge). Project into the desired
distribution type for this edge using moment matching. Divide
out the context message.
- Observed node message: a point mass at the observed value;

end

until all messages have converged
Compute marginal distributions as the product of all incoming messages
at each target variable node.

in Figure 3.30, This result is more surprising, since we believed Jill to be the
stronger player. Intuitively we would expect the adjustments of the skill dis-
tributions therefore to be greater, which is indeed the case. We see that the
shift in the means of the distributions is larger than in Figure 3.29. In fact
the change in the mean of the distribution of Jskill is so large that it is now
less than the mean of Fskill. Again, the standard deviations of Jill’s skill has
decreased, reflecting a reduction in uncertainty due to the incorporation of new
evidence.

Because the skill updates in TrueSkill model depend on the variance of the
skill distribution, TrueSkill is able to make relatively large changes to the dis-
tributions of new players. Furthermore, this happens automatically as a conse-
quence of running inference in our model. By contrast, the updates in Elo are
governed by the update parameter K. In practice, this problem is addressed in
Elo by altering the value of the update parameter K according to the number of
games played. For instance, FIDE (the World Chess Federation) uses K = 30
for new players (this was increased from the previous value of 25 in July 2011
to accelerate the rating changes for early players). Once a player has played
30 games, this switches to K = 15 as long as their rating remains below 2,400,
and becomes K = 10 once players have achieved a rating of 2,400. By tracking
uncertainty in a model-based approach, we can avoid the need for such ad-hoc
parameter changes.

146 CHAPTER 3. MEETING YOUR MATCH

(5) Bern(1.0)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(6) Gaussian(160.8, 40.2²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(7) Gaussian(160.8, 40.2²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.27: Messages (5), (6), and (7) in the application of expectation prop-
agation to the evaluation of the updated distribution for Jskill. Note that
messages (6) and (7), which are highlighted in orange, differ from the exact
messages in Figure 3.18.

3.3.2 Multiple games

So far in this section we have developed a probabilistic model for a single game
of Halo between Jill and Fred. In practice we will have a large pool of players,
and individual games will take place between pairs of players from within that
pool. When we try to assess the skill of a player we potentially have available
the results of all the games ever played by that player against a range of different
opponents. We might also have available the results of all the games played by
those opponents, many of which might involve yet other players, and so on.
In principle, all of this information is relevant and could help us to assess the
original player’s skill. Furthermore, every time there is a new game outcome
we could include this additional information and update the skill of the player
even if they themselves haven’t played any new games. This new information
could be relevant even if it involves a game between other players since it could
influence the assessment of their skills, and hence the relative skill of our player.

We could in principle handle this by constructing a very large factor graph
expressing all of the games played so far. Each player would have a single vari-
able representing their skill value, but multiple variables (one for each game
they have played) representing their performances on each of the games. This

3.3. A SOLUTION: EXPECTATION PROPAGATION 147

(5) Bern(1.0)

(8) Gaussian(160.8, 40.5²)

(1) Gaussian(100, 5²)

(2) Gaussian(100, 5²)

(7) Gaussian(160.8, 40.2²)

(6) Gaussian(160.8, 40.2²)

(3) Gaussian(100, 5² + 5²)

(4) Gaussian(100, 5² + 5²)

(9) Gaussian(120, 40²)

Jwins=T

Jskill Fskill

Jperf Fperf

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

>

Figure 3.28: Messages (8) and (9) in the application of expectation propagation
to the evaluation of the updated distribution for Jskill. Note that in addition
to messages (6) and (7), message (8) (in orange) also differs from the exact
message from Figure 3.19.

skill

0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.29: The result of applying the TrueSkill model for a game between Jill
(blue) and Fred (red) for the case where Jill is the winner. The prior distribu-
tions are shown as dashed curves, and the corresponding posterior distributions
are shown as solid curves.

148 CHAPTER 3. MEETING YOUR MATCH

skill

0 20 40 60 80 100 120 140 160 180 200 220 240

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.30: As in Figure 3.29 but for the case where Fred is the winner. The
prior distributions (dashed lines) are the same as before.

would be a complex graph with multiple loops, and we could run loopy belief
propagation, using the expectation propagation approximation, to keep the mes-
sages within the Gaussian family of distributions, until a suitable convergence
criterion is satisfied. This would give a posterior skill distribution for each of
the players, which takes account of all of the games played. If a new game is
then played we would start again with a new, larger factor graph and re-run
inference in order to obtain the new posterior distributions of every player.

In practice, an approach which takes account of all previous game outcomes
in order to update the skills of all the players would be completely infeasible.
Instead we can use an approximate inference approach known as online learn-
ing (sometimes called filtering) in which each player’s skill distribution gets
updated only when a game outcome is obtained which involves that player. We
therefore need only store the mean and variance of the Gaussian skill distribu-
tion for each player. When a player plays a new game, we run inference using
this current Gaussian skill distribution as the prior, and the resulting posterior
distribution is then stored and forms the prior for the next game. Each single
game is therefore described by a graph of the form shown in Figure 3.10.

This particular form of online inference algorithm, based on local projection
onto the Gaussian distribution in which each data point (i.e. game outcome) is
used only once, is also known as Gaussian Density Filtering Maybeck [1982];
Opper [1998]. It can be viewed as a special case of expectation propagation in
which a specific choice is made for the message-passing schedule: namely that
messages are only passed forwards in time from older games to newer games,
but never in the reverse direction.

It is worth noting that, if we consider the full factor graph describing all
games played so far, then the order in which those games had been played
would have been irrelevant. When doing online learning, however, the ordering
becomes significant and can influence the assessed skills. We have to live with
this, however, as only online learning would be feasible in a practical system.

3.3. A SOLUTION: EXPECTATION PROPAGATION 149

NumberOfGames

0 5 10 15 20 25 30 35 40 45 50 55 60 65

20

25

30

35

40

45

Gamer00182 (TrueSkill)

Gamer00049 (TrueSkill)

Figure 3.31: Trajectories of skill distributions of two of the top players in the
Halo2 head-to-head dataset, showing the mean and the one-standard-deviation
envelopes. The horizontal axis shows the number of games played by the corre-
sponding player.

We can illustrate the behaviour of online learning in our model using data
taken from the game Halo 2 on Xbox Live. We use a data set involving 1,650
players which contains the outcomes of 5,915 games. Each game is a head-to-
head contest in which a pair of players play against each other. Figure 3.31
shows how the skill distributions for two of the top players varies as a function
of the number of game outcomes played by each of the two players. We see
that the initial skill distributions are the same, because all player skills have the
same prior distribution before any games are played. As an increasing number
of games are played, we see that the standard deviation of the skill distributions
decreases. This reduction in uncertainty as a result of observing the outcome
of games is the effect we saw earlier in Figure 3.29 and Figure 3.30.

The model we have constructed in this section represents a single game
between two players. However, many games on Xbox Live have a more elaborate
structure, and so we turn next to a number of model extensions which allow for
these additional complexities.

Self assessment 3.3

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Reproduce Figure 3.24 by evaluating the (red) Gaussian context mes-
sage and the (blue) exact CumGauss message at Jperf values of -50, -49
. . . 0,1,2 . . . 299,300. Plot the two lines you get with Jperf on the x axis
and the evaluated messages on the y axis. You will need to rescale the
CumGauss message to get it to fit (remember that the scale of this message

150 CHAPTER 3. MEETING YOUR MATCH

does not matter since it is an improper distribution). To get the (green)
product message corresponding to the exact marginal for Jperf, first mul-
tiply your two messages together at each Jperf value. Then rescale the
result so that the area under the line is 1 (you can achieve this roughly
by rescaling to make the sum of the value at each point equal to 1). Plot
this result as a third line on your axes.

2. Compute the mean and standard deviation of the exact marginal product
message that you just computed. The mean can be well approximated
by summing the product of the message at each point times the Jperf

value at each point. The variance (which is the square of the standard
deviation) can be approximated similarly using the mnemonic “the mean
of the square minus the square of the mean” (see Wikipedia). First, you
need to compute the “mean of the square” which can be approximated by
sum of the product of the message at each point times the square of the
Jperf value at each point. Then subtract off “the square of the mean”
which refers to the mean you just computed. This gives the variance,
which you can take the square root of to get the standard deviation. You
have now computed the mean and standard deviation of the Gaussian
approximation to the marginal for Jperf. You can check your result
against the Gaussian in Figure 3.25.

3. Finally, we need to divide this Gaussian distribution (whose mean and
standard deviation you just found in the previous exercise) by the Gaus-
sian context message. You can refer to [Bishop, 2006] for how to do this.
You can check your result against message (6) in Figure 3.27. Congratu-
lations! You have now successfully calculated an expectation propagation
message!

4. Now we can use Infer.NET to do the expectation propagation calculations
for us. Implement the Trueskill model in Infer.NET, setting the skill
distributions for Jill and Fred to the ones used in this section (this How
to guide might help). Compute the posterior marginal distributions for
Jill and Fred for the two outcomes where Jill wins the game and where
Fred wins the game. Plot your results and check them against Figure 3.29
and Figure 3.30.

Review of concepts introduced in this section

expectation propagation An approximate message-passing algorithm that
extends belief propagation by allowing messages to be approximated by the
closest distribution in a particular family, such as a Gaussian distribution. This
approximation is done either to ensure that the inference algorithm remains
tractable or to speed up the inference process. See algorithm 3.1.

https://en.wikipedia.org/wiki/Variance
http://infernet.azurewebsites.net/docs/How to represent large irregular graphs.aspx
http://infernet.azurewebsites.net/docs/How to represent large irregular graphs.aspx

3.3. A SOLUTION: EXPECTATION PROPAGATION 151

online learning An approach to machine learning in which data points are
considered one at a time, with model parameter distributions updated after each
data point.

152 CHAPTER 3. MEETING YOUR MATCH

3.4 Extensions to the core model

So far, we have constructed a probabilistic model of a game played between
two players which results in a win for one of the players. To handle the variety
of games needed by Xbox Live, we need to extend our model to deal with a
number of additional complexities. In particular, real games can end in draws,
can involve more than two players, and can be played between teams of people.
We will now show how our initial model can be extended to take account of
these complexities. This flexibility nicely illustrates the power of a model-based
approach to machine learning.

The original Xbox online gaming service used the Elo algorithm to estimate
the skills of players. However, in spite of its popularity, the Elo system suffers
from some significant limitations. In particular:

• Elo does not handle draws

• Elo does not handle team games

• Elo does not handle games with more than two players

Various modifications to the basic Elo system, mostly heuristic in nature,
have been proposed to deal with the issues of draws, team games, and multiple
players. A draw, for example, can be represented as a score of 1/2 in computing
the skill updates. The fundamental problem is that, since Elo is an algorithm
rather than a model, it is difficult to see what assumptions are being made
by making changes to the algorithm. Without understanding the assumptions
underlying the each change it is hard to predict how well the resulting algorithm
will work – and, more importantly, extremely hard to diagnose problems with
the algorithm when they arise. A model-based approach allows such extensions
to be incorporated in a transparent way, giving rise to a solution which can
handle all of the above complexities – whilst remaining both understandable
and maintainable.

3.4.1 What if a game can end in a draw?

In our current model, the player with the higher performance value on a partic-
ular game is the winner of that game. For games which can also end in a draw,
we can modify this assumption by introducing the concept of a draw margin,
such that a player is the winner only if their performance exceeds that of the
other player by at least the value of the draw margin. Mathematically this can
be expressed as

if Jperf > Fperf + drawMargin Jill wins

else if Fperf > Jperf + drawMargin Fred wins

else game drawn. (3.19)

This is illustrated in Figure 3.32.
We have therefore modified Assumption 3 to read:

3.4. EXTENSIONS TO THE CORE MODEL 153

Fred's Performance

80 90 100 110 120 130 140

80

90

100

110

120

130

140

Draw

Jill Wins

Fred Wins

Figure 3.32: Schematic illustration of the regions in performance space where
Jill is the winner, where Fred is the winner, and where the game ends in a draw.

3 The player with the higher performance value wins the game, unless the
difference between their performance and that of their opponent is less
than the draw margin, in which case the game is drawn.

The value of the draw margin represents a new parameter in our model,
and we may not know the appropriate value. This is particularly true if we
introduce a new type of game, or if we modify the rules for an existing game,
where we have yet to see any game results. To solve this problem we simply treat
the draw margin as a new random variable drawMargin whose value is to be
learned from data. Because drawMargin is a continuous variable, it is chosen to
be a Gaussian. This can be expressed as a factor graph, as shown in Figure 3.33.
The variable Jwins is replaced by outcome which is a discrete variable that takes
one of the values JillWins, Draw, or FredWins. The WinLoseDraw factor is
simply a function whose value is 1 if the three values of Jperf, drawMargin, and
Fperf are consistent with the value of outcome and is 0 otherwise. We need
to make some modifications to the evaluation of messages sent out from this
factor. These will not be discussed in detail here, and instead the interested
reader can refer to this excellent blog post and Herbrich et al. [2007].

In order to simplify the subsequent discussion of other extensions to the
core model, we will ignore the draw modification in the remaining factor graphs
in this chapter, although all subsequent models can be similarly modified to
include draws if required.

http://www.moserware.com/2010/03/computing-your-skill.html

154 CHAPTER 3. MEETING YOUR MATCH

outcome

Jskill Fskill

Jperf FperfdrawMargin

Gaussian(120, 40²) Gaussian(100, 5²)

Gaussian(•, 5²) Gaussian(•, 5²)

Gaussian(1,10)

WinLoseDraw

Figure 3.33: TrueSkill model for a game between two players which includes the
possibility of a draw.

3.4.2 What if we have more than two players in a game?

Games with more than two players require a more
complex model

Suppose we now have more than two
players in a game, such as in the Halo
game ‘Free for All’ in which eight
players simultaneously play against
each other. The outcome of such a
game is now an ordering amongst the
players involved in the game. With
our model-based approach, incorpo-
rating a change such as this involves
just making a suitable assumption,
constructing the corresponding factor
graph and then running our inference
algorithm. Our new Assumption 3
can be stated as

3 The order of players in the game
outcome is the same as the or-
dering of their performance val-
ues in that game.

If there are N players in the game then this assumption can be captured in
a factor graph using N −1 GreaterThan factors to describe the player ordering.
This is illustrated for the case of three players in Figure 3.34. Note that we could
have introduced a separate ’greater-than’ factor for each possible pair of players.
For N players there are N(N − 1)/2 such factors. However, these additional

3.4. EXTENSIONS TO THE CORE MODEL 155

(D)

(A) (B)

(C)

p1Wins p2Wins

p1Skill p2Skill p3Skill

p1Perf p2Perf p3Perf

Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²)

Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²)

> >

Figure 3.34: Factor graph for a game involving three players. Also shown are
some of the messages which arise in the use of expectation propagation applied
to this graph.

factors contain only redundant information and lead to an unnecessarily complex
graph. The ordering of N players can be expressed using N − 1 greater than
factors, provided these are chosen to connect the pairs of adjacent players in
the ordering sequence. In effect, because we know the outcome of the game, we
can choose a relatively simple graph which captures this. Inference

Inference deep-dive
In this optional section, we show why the use of expectation propagation, even
for a tree-structured graph, can require iterative solution. If you want to fo-
cus on modelling, feel free to skip this section. The extension to more than
two players introduces an interesting effect related to our expectation propa-
gation algorithm. We saw in subsection 2.2.2 that if our factor graph has a
tree structure then belief propagation gives exact marginal distributions after
a single sweep through the graph (with one message passed in each direction
across every link). Similarly, if we now apply expectation propagation to the
two-player graph of Figure 3.10 this again requires only a single pass in each
direction. This is because the ‘context’ messages for the expectation propaga-
tion approximation are fixed. However, the situation becomes more complex
when we have more than two players. The graph of Figure 3.34 has a tree
structure, with no loops, and so exact belief propagation would require only a
single pass. However, consider the evaluation of outgoing message (A) using
expectation propagation. This requires the incoming message (D) to provide
the ‘context’ for the approximation. However, message (D) depends on mes-
sage (C) which itself is evaluated using expectation propagation using message
(B) as context, and message (B) in turn depends on message (A). Expectation
propagation therefore requires that we iterate these messages until we reach
some suitable convergence criterion (in which the changes to the messages fall
below some threshold). We therefore modify our message-passing schedule so
that we first pass messages downwards from the skill nodes to the performance
nodes (as before), then we perform multiple passes back and forth amongst the

156 CHAPTER 3. MEETING YOUR MATCH

performance nodes until we achieve convergence, and then finally pass messages
upwards to the skill nodes in order to evaluate posterior skill marginals.

Remember that in Figure 3.29 and Figure 3.30 we saw how the shift of
the distributions between prior and posterior were larger in the case where the
weaker player (Fred) won the game. Now we repeat the experiment, except
with a third player (Steve), whose prior skill distribution is Gaussian(140, 402)
(keeping Jill as Gaussian(120, 202) and Fred as Gaussian(100, 402) as before),
and run the multi-player TrueSkill model on a single game with the outcome
Jill 1st, Fred 2nd, Steve 3rd. The results of this are shown in Figure 3.35.
Firstly, note that since Steve was expected to be the strongest player, but in
fact came last, his posterior mean has moved markedly downwards (to below
the other two players). Secondly, note that the changes in the means of Jill
and Fred are in the same direction as in Figure 3.29, but are more pronounced
than before. This again is because the overall game result is more surprising.
In Figure 3.36 we begin with the same priors, but now observe a single game

skill

-50 0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

Figure 3.35: The result of applying the TrueSkill model for a three player game
between Jill (blue), Fred (red), and Steve (green) for the case where Jill is the
winner, Fred comes second and Steve comes last. The prior distributions are
shown as dashed curves, and the corresponding posterior distributions are shown
as solid curves.

with outcome Jill 2nd, Fred 1st, Steve 3rd. Note that since Fred and Steve’s
prior skills were equidistant from Jill’s, and their prior variances were equal,
their posterior means have shifted by the same amount, and so they appear to
have “swapped” places. A further consequence of this symmetry is that since
Jill neither won nor lost, her skill mean has not moved, although the variance of
her skill is reduced due to the new information provided by the game outcome.

3.4. EXTENSIONS TO THE CORE MODEL 157

skill

-50 0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

Figure 3.36: As in Figure 3.35 but for the case where Fred is the winner, followed
by Jill and then Steve came last.

3.4.3 What if the games are played by teams?

Many of the games available on Xbox Live can be played by teams of players.
For example, in Halo, another type of game is played between two teams each
consisting of eight players. The outcome of the game simply says which team is
the winner and which team is the loser, and the challenge is to use this outcome
information to revise the skill distributions for each of the individual players.
This is an example of a credit assignment problem in which we have to work
out how the credit for a victory (or blame for a defeat) should be attributed
to individual players when only the outcome for the overall team is given. The
solution is similar to the last two situations: we make an assumption about how
the individual player skills combine to affect the game outcome, we construct
a probabilistic model which encodes this assumption and then run inference to
update the skill distributions. There is no need to invent new algorithms or
design new heuristics.

The performance of a team depends on the skills of
the individual players.

Here is one suitable assumption
which we could use when modelling
team games, which would replace As-
sumption 3 :

3 The performance of a team is
the sum of the performances of
its members, and the team with
the highest performance value
wins the game.

We can now build a factor graph
corresponding to this assumption. For
example, consider a game between
two teams, each of which involves two

158 CHAPTER 3. MEETING YOUR MATCH

players. The factor graph for this is
shown in Figure 3.37.

team1Wins

skill1 skill2 skill3 skill4

perf1 perf2 perf3 perf4

team1Perf team2Perf

Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²) Gaussian(120, 40²)

Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²)

+ +

>

Figure 3.37: A factor graph of the TrueSkill model for two teams. The first team consists of players 1 and 2,
and the second team consists of players 3 and 4.

The performance of a team is de-
termined by the performance of the players who comprise that team. Our
assumption above was that the team performance is given by the sum of the
performances of the individual players. This might be appropriate for collabora-
tive team games such as Halo. However, other assumptions might be appropriate
in other kinds of game. For example, in a race where only the fastest player
determines the team outcome, we might make the alternative assumption

3 The performance of a team is equal to the highest performance of any of
its members, and the team with the highest performance value wins the
game.

In this section we have discussed various modifications to the core TrueSkill
model, namely the inclusion of draws, the extension to multiple players, and
the extension to team games. These modifications can be combined as required,
for example to allow a game between multiple teams that includes draws, by
constructing the appropriate factor graph and then running expectation propa-
gation. This highlights not only the flexibility of the model-based approach to
machine learning, but also the ease with which modifications can be incorpo-
rated. As long as the model builder is able to describe the process by which the
data is generated, it is usually straightforward to formulate the corresponding
model. By contrast, when a solution is expressed only as an algorithm, it may
be far from clear how the algorithm should be modified to account for changes

3.4. EXTENSIONS TO THE CORE MODEL 159

in the problem specification. In the next section, we conclude our discussion of
the online game matchmaking problem by a further modification to the model
in which we relax the assumption that the skills of the players are fixed.

Self assessment 3.4

The following exercises will help embed the concepts you have learned in this
section. It may help to refer back to the text or to the concept summary below.

1. Sketch out a factor graph for a model which allows draws, two-player
teams and multiple teams. You will need to combine the factor graphs
of Figure 3.33, Figure 3.34 and Figure 3.37. Your sketch can be quite
rough – for example, you should name factors (e.g. “Gaussian”) but there
is no need to provide any numbers for factor parameters.

2. Extend your Infer.NET model from the previous self assessment to have
three players and reproduce the results from Figure 3.35 and Figure 3.36.

3. [Project idea] There is a wide variety of sports results data available on
the web. Find a suitable set of data and build an appropriate model to
infer the skills of the teams or players involved. Rank the teams or players
by the inferred skill and decide if you think the model has inferred a good
ranking. If not, diagnose why not and explore modifications to your model
to address the issue.

Review of concepts introduced in this section

credit assignment problem The problem of allocating a reward amongst a
set of entities, such as people, all of which have contributed to the outcome.

160 CHAPTER 3. MEETING YOUR MATCH

3.5 Allowing the skills to vary

At this point we seem to have found a comprehensive solution to the problem
posed at the start of the chapter. We have a probabilistic model of games
between multiple teams of players including draws, in which simpler situations
(two players, individuals instead of teams, games without draws) arise as special
cases. However, when this system was deployed for real beta testers, it was found
that its matchmaking was not always satisfactory. In particular, the skill values
for some players seemed to ’get stuck’ at low values, even as the players played
and improved a lot, leading to poor matchmaking.

Skill increases with
practice.

To understand the reason for this we note that the assump-
tions encoded in our model do not allow for the possibility that
the skill of a player could change over time. In particular, As-
sumption 1 says that “each player has a skill value” – in other
words, each player has a single skill value with no mention of
this skill value being allowed to change. Since players’ skills do
change over time, this assumption will not apply to real data.
For example, as a player gains experience in playing a particular
type of game, we might anticipate that their skill will improve.
Conversely, an experienced player’s skill might deteriorate if they
play infrequently and get out of practice.

You may think that our online learning process updates our
skill distribution for a player over time and so would allow the
skill to change. This is a common misconception about online
learning, but it is not true. Our current model assumes that
the skill of a player is a fixed, but unknown, quantity. Online
learning does not represent the modelling of an evolving skill
value, but rather an updating of the uncertainty in this unknown
fixed-across-time skill.

3.5.1 Reproducing the problem

To deal with players having changing skills, we will need to
change the model. But first, we need to reproduce the prob-
lem, so that we can check later that we have fixed it. To do this we can create
a synthetic data set. In this data set, we synthesise results of games involving
a pool of one hundred players. The first player, Elliot, has an initial skill fixed
at 110, and this skill value is increased in steps as shown by the red line in
Figure 3.38. The remaining 99 players have fixed skill values which are drawn
from a Gaussian with mean 125 and standard deviation 10. For each game, two
players are selected at random and their performances on this game are evalu-
ated by adding Gaussian noise to their skill values with standard deviation 5.
This just corresponds to running ancestral sampling on the model in Figure 3.6
(just like we did to create a synthetic data set in subsection 2.5.1).

Given this synthetic data set, we can then run online learning using the
model in Figure 3.10 in which the game outcomes are known and the skills are

3.5. ALLOWING THE SKILLS TO VARY 161

Number of games

0 50 100 150 200 250 300 350 400 450 500

110

115

120

125

130

135

140

Elliot (Fixed skill model) Elliot (Truth)

Figure 3.38: The red curve shows the skill value for player Elliot in a synthetic
data set drawn from a pool of 100 players. All other players have fixed skills (not
shown). The blue line shows the mean of the inferred Gaussian skill distribution
for Elliot under our model, which assumes that Elliot’s skill is fixed. The blue
shaded region shows the plus/minus one-standard-deviation region around the
mean of this distribution.

unknown. Figure 3.38 shows the inferred skill distribution for Elliot under this
model. We see that our model cannot account for the changes in Elliot’s skill:
the estimated skill mean does not match the trajectory of the true skill, and the
variances of the estimates are wildly overconfident. Due to the small variance,
the update to the skill mean is small, and so the evolution of the skill mean is
too slow. This is unsurprising as a key assumption of the model, namely that
the skill of each player is constant, is incorrect.

To address this problem, we need to change the incorrect assumption in
our model. Rather than assuming a fixed skill, we need to allow for the skill
to change by a typically small amount from game to game. We can therefore
replace Assumption 1 with:

1 Each player has a skill value, represented by a continuous variable, given
by their skill value in their previous game plus some change in skill which
has a zero-mean bell-shaped distribution.

Whereas previously a player had a single skill variable, there is now a separate
skill variable for each game. We assume that the skill value for a particular
player in a specific game is given by the skill value from the previous game
involving that player with the addition of some change in value having, on

162 CHAPTER 3. MEETING YOUR MATCH

outcome₍₁₎ outcome₍₂₎

skill1₍₁₎ skill2₍₁₎ skill1₍₂₎ skill2₍₂₎

perf1₍₁₎ perf2₍₁₎ perf1₍₂₎ perf2₍₂₎

Gaussian(120, 40²) Gaussian(120, 40²)

Gaussian(•, 0.4²) Gaussian(•, 0.4²)

Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²) Gaussian(•, 20²)

> >

Figure 3.39: A factor graph for two players and two successive games in which the skill values are allowed to
change from one game to the next.

average, the value of zero. Again, we make this assumption mathematically
precise by choosing this distribution to be a zero-mean Gaussian. If we denote
the skill of player in their previous game by skill(old) and their skill in the
current game by skill(new), then we are assuming that

skill(new) = skill(old) + skillChange (3.20)

where

p(skillChange) = Gaussian(0, SkillChangeVariance). (3.21)

From these two equations it follows that [Bishop, 2006]

p
(
skill(new)

)
= Gaussian

(
skill(old), SkillChangeVariance

)
. (3.22)

This allows us to express our new assumption in the form of a factor graph. For
example, in the case of two players who play two successive games against each
other, the factor graph would be given by Figure 3.39. The prior distribution
for skill of player 1 in the second game, denoted skill1(2), is given by a Gaussian
distribution whose mean, instead of being fixed, is now given by the skill of that
player in the previous game, denoted by skill1(1).

Inference in this model, using the online learning approximation, can be done
as follows. We run our inference algorithm, based on expectation propagation,
for the first game using a graph of the form shown in Figure 3.10, to give
posterior Gaussian skill distributions for each of the players. Then we send
messages through the Gaussian factors connecting the two games, as indicated
in blue in Figure 3.39. The incoming messages to these factors are the skill
distributions coming from the first game. The subsequent outgoing messages to

3.5. ALLOWING THE SKILLS TO VARY 163

the new skill variables are, because of the convolution computed for the Gaussian
factor, broadened versions of these skill distributions. These are then used as
the prior skill distribution for this new game. Because we are broadening the
prior in the new game, we are essentially saying that we know less about the skill
of the player. This in turn means the new game outcome will lead to a greater
change in skill and so we will be better at tracking changes in skill. It may
seem strange that we can improve the behaviour of our system by increasing
the uncertainty in our skill variable, but this arises because we have modified
the model to correspond more closely to reality. In the time since the last game,
the player’s skill may indeed have changed and we are now correctly modelling
this possibility.

We can now test out this modified model on our synthetic data set. We use
a SkillChangeVariance of 0.16 which encodes our belief that the change in
skill from one game to the next should be small. The results are shown by the
green curve in Figure 3.40.

Number of games

0 50 100 150 200 250 300 350 400 450 500

105

110

115

120

125

130

135

140

Elliot (Fixed skill model) Elliot (Truth)

Elliot (Varying skill model)

Figure 3.40: This shows the same information as in Figure 3.38 with the addition
in green of the distribution of inferred skill for Elliot using a model in which
skill values are allowed to evolve over time.

We see that the changing skill of Elliot is tracked much better when we
allow for varying skills in our model – we have solved the problem of tracking
time-varying skills!

This particular model, in which we assume a Gaussian-distributed change is
added at each stage is known as the Kalman filter [Kalman, 1960; Zarchan and
Musoff, 2005] and is widely used in signal processing. Note that we do not need
to know anything about Kalman filters, or to be familiar with the literature

164 CHAPTER 3. MEETING YOUR MATCH

or with the associated algorithms or terminology, in order to use them in our
application. We just write down the model corresponding to our assumptions
and run online message passing, and this will implement the standard Kalman
filtering equations automatically.

Rather than doing online learning in this model, we could instead perform
full inference on a large factor graph with multiple games. In this case, we
would have messages which pass forward through time and those which pass
backwards through time. The first are the (Kalman) filtering equations as before
and the second are called the Kalman smoothing equations. Again, these arise
automatically without requiring any specific knowledge of Kalman filters. This
technique has been used to apply the TrueSkill model to the history of chess to
work out the relative strengths of different historical chess players, even though
they lived decades apart! You can read all about this in Dangauthier et al.
[2007].

3.5.2 The final model

Now that we have adapted the model to cope with varying skills, it meets all
the requirements of the Xbox Live team. With all extensions combined, here is
the full set of assumptions built into our model:

1 Each player has a skill value, represented by a continuous variable,
given by their skill value in their previous game plus some change in
skill which has a zero-mean bell-shaped distribution.

2 Each player has a performance value for each game, which varies
from game to game such that the average value is equal to the skill
of that player. The variation in performance, which is the same for
all players, is symmetrically distributed around the mean value and
is more likely to be close to the mean than to be far from the mean.

3 The performance of a team is given by the sum of the performances
of the players within that team.

4 The order of teams in the game outcome is the same as the ordering
of their performance values in that game, unless the magnitude of the
difference in performance between two teams is below a threshold in
which case those teams draw.

Figure 3.41: The four assumptions encoded in our final model.

This model encompasses the va-
riety of different game types which
arise including teams and multiple
players, it allows for draws and it
tracks the evolution of player skills

3.5. ALLOWING THE SKILLS TO VARY 165

over time. When this full model was
deployed it gave good user feedback
during extensive beta testing and so
when Xbox 360 launched in Novem-
ber 2005, the online skill rating system
was switched from Elo to TrueSkill.
Since then, the skill distributions in-
ferred by TrueSkill have been used to
perform real-time matchmaking. The
role of the model is to infer the skills, while the decision on how to use those
skills to perform matchmaking is a separate question. Typically this is done
by selecting players for which the game outcome is most uncertain. Note that
this also tends to produce matches whose outcomes are the most informative in
terms of learning the skills of the players. The matchmaking process must also
take account of the need to provide players with opponents within a reasonably
short time, and so there is a natural trade-off between how long a player waits
for a game to be set up, and the closeness in match to their opponents. One
of the powerful aspects of decomposing the matchmaking problem into the two
stages of skill inference and matchmaking decision is that changes to the match-
making criteria are easy to implement and do not require any changes to the
more complex modelling and inference code. As discussed in the introduction
the ability to match players against others of similar ability, and to do so quickly
and accurately, is a key feature of this very successful service.

The inferred skills produced by TrueSkill are also used for a second, distinct
purpose which is to construct ‘leader boards’ showing the ranking of players
within a particular type of game. For this purpose, we need to define a single
skill value for each player, based on the inferred Gaussian skill distribution.
One possibility would be to use the mean of the distribution, but this fails to
take account of the uncertainty, and could lead to a player having an artificially
high (or low) position on the leader board. Instead, the displayed skill value
for a player is taken to be the mean of their distribution minus three times
the standard deviation of their distribution. This is a conservative choice and
implies that their actual skill is, with high probability, no lower than their
displayed skill. Thus a player can make progress up the leader board both
by increasing the mean of their distribution (by winning games against other
players) and by reducing the uncertainty in their skill (by playing lots of games).

We have seen how TrueSkill continually adapts to track the skill level of
individual players. In the next chapter we shall see another example of a model
which adapts to individual users, but in the context of a very different kind of
application: a model that helps to de-clutter your email inbox.

166 CHAPTER 3. MEETING YOUR MATCH

Chapter 4

Uncluttering Your Inbox

More and more people are becoming overwhelmed by their email. It
is not unusual for a busy person to receive many hundreds of new
emails every day. As a result, people are having to spend longer
processing their emails – and are more likely to miss an important
email because it gets lost in a constant stream of new emails. Can
model-based machine learning help to reduce this information over-
load?

The average office worker spends almost three hours
a day processing their email. About 90% of this time is
spent either reading incoming email or managing existing
email – only the remaining 10% is spent writing or reply-
ing to emails [Outlook team, 2008]. An automatic tool
to speed up reading and managing email would free up a
lot of people’s time, allowing them to focus on important
tasks and avoid the stress of information overload.

Microsoft Exchange is an email server used to power
more than 300 million mailboxes worldwide [Radicati and
Hoang, 2010]. The Exchange team are keen to use ma-
chine learning to help people to manage their mail and
improve their productivity. In this chapter, we will look
at how model-based machine learning was used by the
Exchange team to separate out the clutter from a user’s
inbox, allowing users to focus on their important emails
and reducing the time taken to process incoming email.

The idea was to decide if a user thinks an email was
clutter or not, based on the actions the user takes on the
email. For example, emails that are never read or quickly deleted are likely to
be considered as clutter by the user. Now suppose we had a machine learning
system that could predict what actions a user would take on a new email –
for example, the system would predict whether a user would reply to an email,

167

168 CHAPTER 4. UNCLUTTERING YOUR INBOX

delete it or leave it unread. Given such a machine learning system we could then
remove from the inbox emails that are unlikely to be read or acted upon. Such
clutter emails could then be placed in a separate location where they could be
easily reviewed and processed in one go, at a convenient time for the user.

To achieve this goal, the team needed a system that could take a number of
older emails that a user had already taken action on and learn which actions
the user would be likely to take on emails with different characteristics. The
system was to consider many aspects of the email: who sent the email, who was
on the To and Cc lines, what the subject was, what was written in the email,
whether there were any attachments and so on. The trained system was then to
be applied to incoming mails to predict the probability of the user performing
various actions on each email. The Exchange team considered it essential that
the system make personalised predictions. Unlike junk mail, which emails are
clutter is a personal thing: what is clutter for one user might not be clutter for
another. For example, a project update email might be clutter for someone not
on the project but might be important to read for someone who is working on
the project.

In this chapter, we’ll use model-based machine learning to develop a per-
sonalised system that meets the needs of the Exchange team. We will focus on
building a system to predict whether a user will reply to an incoming email.
However, the resulting system will be general enough to predict many other
kinds of actions and so can be used to predict whether or not a user will con-
sider an email to be clutter. In particular, we will see how to:

• Manage email data and privacy issues,

• Develop a model for predicting actions personalized to each user,

• Use information about an email to drive the model,

• Evaluate the model both in numerical terms and in terms of user experi-
ence,

• Extend the model to address various problems as they arise.

4.1. COLLECTING AND MANAGING EMAIL DATA 169

4.1 Collecting and managing email data

For the purposes of writing this chapter, we developed a tool for collecting all
of a person’s email received in a given time period. We then used the tool to
collect emails from 10 volunteers who kindly agreed to share their email data
(in an anonymised form, as we shall discuss shortly). This was quite a time
consuming process and so we need to plan carefully about how we are going
to use this precious email data. For example, we need to decide which data
we will use to train on and which data we will use to evaluate the system’s
accuracy. It is very important that the data used for training is not used for
evaluation. If training data is used for evaluation it can give misleadingly high
accuracy results – because it is much easier to make a prediction for an email
when you’ve already been told the correct answer! To avoid this, we need to
divide our data into different data sets:

• A training set which we will use to train the model.

• A separate test set which we will use to assess the prediction accuracy for
each user and so indicate what we might expect to achieve for real users.

If you were to evaluate a trained model on its training set, it will tend to give
higher accuracy results than on a test set. The amount that the accuracy is
higher on the training set indicates how much the model has learned that is
specific to the particular data in the training set, rather than to that type of
data in general. We say that a model is overfitting to the training data, if its
accuracy is significantly higher on the training set than on a test set.

If we were only planning to evaluate our system once, these two data sets
would be sufficient. However, we expect to make repeated changes to our system,
and to evaluate each change to see if it improves prediction accuracy. If we
were to evaluate on the test set many times, making only the changes that
improve the test set accuracy, we would run the risk of overfitting to the test
set. This is because the process of repeatedly making changes that increase the
test set accuracy could be picking up on patterns that are specific to the test and
training set combined but not to general data of the same type. This overfitting
would mean that the accuracy reported on the test set would no longer be
representative of what we might expect for real users. To avoid overfitting, we
will instead divide our data into three, giving a third data set:

• A validation set which we will use to evaluate prediction accuracy during
the process of developing the system.

We can evaluate on the validation set as many times as we like to make decisions
about which changes to make to our system. Once we have a final system, we
will then evaluate once on the test set. If it turns out that the model has been
overfitting to the validation set, then the accuracy results on the test set will be
lower, indicating that the real user accuracy will be lower than we might have
expected from the validation set accuracy numbers.

170 CHAPTER 4. UNCLUTTERING YOUR INBOX

If the test set accuracy is not yet sufficient, it would then be necessary
to make further changes to the system. These can again be assessed on the
validation set. At some point, a new candidate system would be ready for test
set evaluation. Strictly speaking, a fresh test set should be used at this point.
In practice, it is usually okay to evaluate on a test set a small number of times,
bearing in mind that the numbers may be slightly optimistic. However, if used
too much, a test set can become useless due to the possibility of overfitting, at
which point it would then be necessary to gather a fresh test set.

For the email data that we collected, we can divide each user’s emails into
training, validation and test sets. Since the goal is to make predictions on
email arriving in the user’s inbox, we exclude emails in the user’s Sent Mail and
Junk folders from these data sets, since such emails did not arrive in the inbox.
We also exclude emails which were automatically moved by a rule, since such
emails also did not appear in the inbox. Table 4.1 gives the sizes of the training,
validation and test sets for each user, after removing such non-inbox emails.

4.1.1 Learning from confidential data

Table 4.1 highlights another challenge when working with email data – it is
highly personal and private data! Email data is an example of personally
identifiable information (PII), which is information that could be used to
identify or learn about a particular person. For an email, personally identifiable
information includes the names and email addresses on the email along with
the actual words of the subjects and email bodies. Knowing which senders a
particular user ignores or replies to, for example, would be very sensitive data.

Train Valida	on Test User Total

User35CB8E5 1,995 2,005 657 4,657

UserCE3FDB4 1,067 1,067 356 2,490

User6AACED 1,827 1,822 600 4,249

User7E601F9 531 528 173 1,232

User68251CD 600 602 198 1,400

User223AECA 532 532 179 1,243

UserFF0F29E 2,202 2,199 729 5,130

User25C0488 1,181 1,182 393 2,756

User811E39F 1,574 1,565 513 3,652

User10628A6 485 485 163 1,133

Total 11,994 11,987 3,961 27,942

Average 1278.77778 1278 422 2978.77778

Table 4.1: Number of emails in the training, validation and test sets for each
user and overall.

4.1. COLLECTING AND MANAGING EMAIL DATA 171

In any system that uses PII, it is essential to ensure that such data is kept
confidential.

In a machine learning system, this need for confiden-
tiality appears to conflict with the need to understand the
data deeply, monitor the performance of the system, find
bugs and make improvements. The main technique used
to resolve this conflict is some kind of anonymisation,
where the data is transformed to remove any PII whilst
retaining the underlying patterns that the machine learn-
ing system can learn from. For example, names and email
addresses can be anonymised by replacing them with arbi-
trary codes. For this project, we anonymise all user identi-
ties using an alphanumeric hash code like ‘User35CB8E5’,
as shown in Table 4.1. This type of anonymisation re-
moves PII (or at least makes it extremely difficult to iden-
tify the user involved) but preserves information relevant
to making predictions, such as how often the user replies to each person.

In some cases, anonymisation is hard to achieve. For example, if we anonymised
the subject and body on a word-by-word basis, this anonymisation could po-
tentially be reversed using a word frequency dictionary. For this reason, we
have removed the email bodies and subject lines from the data used for this
chapter, so that we can make it available for download while protecting the
confidentiality of our volunteers. We will retain the lengths of the subject lines
and body text, since they are useful for making predictions but do not break
confidentiality. If you wish to experiment with a more complete email data
set, there are a few such available, an example of which is the Enron email
dataset. Notice that, even in this case, some emails were deleted “as part of a
redaction effort due to requests from affected employees”, demonstrating again
the sensitive nature of email data! For cases like these where anonymisation
cannot easily be achieved, there is an exciting new method under development
called homomorphic encryption which makes it possible to do machine learning
on encrypted data without decrypting the data first. This approach is at the
research stage only, so is not yet ready for use in a real application (but read
more in Panel 4.1 if you are curious).

Using our anonymised and pruned data set means that we can inspect, refine,
or debug any part of the system without seeing any confidential information.
In some cases, this anonymisation can make it hard to understand the system’s
behaviour or to debug problems. It is therefore useful to have a small non-
anonymised data set to work with in such cases. For this chapter we used
a selection of our own emails for this purpose. For a deployed system, you
can also ask real users to voluntarily supply a very limited amount of what
would normally be confidential information (for example, a single email), in
order to debug an issue they are reporting with that email (such as an incorrect
prediction).

Now that we have training and validation data sets in a suitably anonymised
form, we are ready to start developing our model.

http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/

172 CHAPTER 4. UNCLUTTERING YOUR INBOX

Review of concepts introduced in this section

training set The part of the collected data which will be used for model
training.

test set The part of the collected data which will be used to assess a trained
model’s accuracy. This evaluation should be performed infrequently, ideally
only once, to avoid overfitting to the test set.

overfitting The situation where a trained model has learned too much about
patterns in the data that are specific to the training set, rather than patterns
relating to general data of the same form. If a model is overfitting, its prediction
accuracy on data sets other than the training set is reduced.

validation set The part of the collected data which will be used to assess
a trained model’s accuracy as the model is being developed. Typically the
validation set is used repeatedly to decide whether or not to make changes to
the model. This runs the risk of overfitting to the validation set, which is why
it is important also to have a separate test set.

personally identifiable information Any information about a person which
could be used to identify who they are or to learn confidential information about
them.

anonymisation A process where data is transformed to remove any personally
identifiable information, whilst retaining enough information to be useful. For
example, email addresses can be anonymised by replacing them by a randomly
generated string, such that the same address is always replaced by the same
string. This allows patterns of email use to be identified without associating
those patterns with any given sender or recipient.

Panel 4.1 – Homomorphic encryption

Homomorphic encryption is a type of data encryption that allows certain algo-
rithms to run directly on the encrypted data, giving encrypted results, without
ever being decrypted! At the moment there are practical restrictions on the
kinds of algorithms that can be run on the data – for example, they may be
required to consist only of additions or multiplications (and a limited number
of these). There is currently also a significant computational cost to running
algorithms this way. Despite these limitations, it is possible to run inference
algorithms using homomorphic encryption – for example, Graepel et al. [2013]
describe a classification algorithm which runs entirely on encrypted data.
Although still at the research stage, homomorphic encryption has great potential
for allowing machine learning algorithms to be run on confidential data.

4.2. A MODEL FOR CLASSIFICATION 173

4.2 A model for classification

The problem of predicting a label, such as ‘reply’ or ‘not reply’, for a data
item is called classification. Systems that perform classification are known as
classifiers, and are probably the most widely used machine learning algorithms
today. There are many different classification algorithms available and, for a
particular prediction task, some will work better than others. A common ap-
proach to solving a classification problem is to try several different classification
algorithms and see which one works the best. This approach ignores the under-
lying reason that the classification algorithms are making different predictions
on the same data: that each algorithm is implicitly making different assump-
tions about the data. Unfortunately, these assumptions are hidden away inside
each algorithm.

You may be surprised to learn that many classification algorithms can be in-
terpreted as doing approximate inference in some probabilistic model. So rather
than running a classification algorithm, we can instead build the corresponding
model and use an inference algorithm to do classification. Why would we do this
instead of using the classification algorithm? Because a model-based approach
to classification gives us several benefits:

• The assumptions in the classifier are made explicit. This helps us to
understand what the classifier is doing, which can allow us to improve
how we use it to achieve better prediction accuracy.

• We can modify the model to improve its accuracy or give it new capabili-
ties, beyond those of the original classifier.

• We can use standard inference algorithms both to train the model and to
make predictions with it. This is particularly useful when modifying the
model, since the training and prediction algorithms remain in sync with
the modified model.

These are not small benefits – in this chapter you will see how all three will
be crucial in delivering a successful system. We will show how to construct the
model for a widely used classifier from scratch, by making a series of assumptions
about how the label arises given a data item. We will then show how to extend
this initial classification model, to achieve various capabilities needed by the
email classification system. Throughout the evolution of the model we will rely
on standard inference algorithms for training and prediction.

Before we start constructing the model, we first need to understand how
a classifier with a fixed set of assumptions could possibly be applied to many
different problems. This is possible because classifiers require the input data
to be transformed into a form which matches the fixed assumptions encoded in
the classifier. This transformation is achieved using a set of features (a feature
set), where a feature is a function that acts on a data item to return one or
more values, which are usually binary or continuous values. In our case we will
use continuous feature values – for example, a feature that returns 1.0 if the

174 CHAPTER 4. UNCLUTTERING YOUR INBOX

user is mentioned on the To line of the email or 0.0 otherwise (we’ll call this
the ToLine feature). It is these feature values, rather than the data item itself,
that are fed into the classifier. So, rather than changing the assumptions in
the classifier, we can use features to transform the data so that it matches the
assumptions already built in to the classifier.

Another important simplification that a classifier makes is that it only ever
makes predictions about the label variable assuming that the corresponding
values for the features are known. Because it always conditions on these known
feature values, the model only needs to represent the conditional probability
P (label|features) rather than the joint distribution P (label, features). Because
it represents a conditional probability, this kind of model is called a conditional
model. It is convenient to build a conditional model because we do not need to
model the data being conditioned on (the feature values) but only the probability
of the label given these values. This brings us to our first modelling assumption.

1 The feature values can always be calculated, for any email.

By always, we mean always: during training, when doing prediction, for every
single email ever encountered by the system. Although convenient, the assump-
tion that the feature values can always be calculated makes it difficult to handle
missing data. For example, if the sender of an email is not known, any features
requiring the sender cannot be calculated. Strictly, this would mean we would
be unable to make a prediction. In practice, people commonly provide a default
feature value if the true value is not available, even though this is not the correct
thing to do. For example in the sender case it is equivalent to treating all emails
with missing senders as if they came from a particular ‘unknown’ sender. The
correct thing to do would be to make a joint model of the feature values and
marginalise over any missing values – but, if data is rarely missing, the simpler
approach is often sufficiently good – indeed it is what we shall use here.

4.2.1 A one-feature classification model

We will start by building a model that uses only one feature to predict whether
a user will reply to an email: whether the user is on the To line or not (the
ToLine feature). Since we are building a conditional model, we only need to
consider the process of generating the label (whether the user replied to the
email or not) from the feature value. The variable we are trying to generate
is therefore a binary label that is true if the user replied to the mail or false

otherwise – we will call this variable repliedTo. This repliedTo variable is the
variable that we will observe when training the model and which we will infer
when making predictions.

It would be difficult to define the process of generating this binary repliedTo

variable directly from the continuous feature values, since it is not itself a contin-
uous variable. Instead, we introduce an intermediate variable that is continuous,
which we shall call the score. We will assume that the score will be higher for
emails which having a higher probability of reply and lower for emails which
have a lower probability of reply. Here is the assumption:

4.2. A MODEL FOR CLASSIFICATION 175

2 Each email has an associated continuous score which is higher when there
is a higher probability of the user replying to the email.

Notice that, unlike a probability, the continuous score value is not required to
lie between zero and one but can take on any continuous value. This makes it
an easier quantity to model since we do not have to worry about keeping its
value constrained to be between zero and one.

We are now ready to make an assumption about how the feature value for
an email affects its score.

3 If an email’s feature value changes by x, then its score will change by
weight × x for some fixed, continuous weight.

This assumption says that the score for an email is either always higher if the
feature value increases (if the weight is positive) or always lower if the feature
value increases (if the weight is negative) or is not affected by the feature value
(if the weight is zero). The size of any change in score is controlled by the
size of the weight: a larger weight means a particular change in feature value
produces a larger change in the score. Remember that, according to our previous
assumption, a higher score means a higher reply probability and lower score
means a lower reply probability.

To build a factor graph to represent Assumption 3 we first need a contin-
uous featureValue variable to hold the value of the feature for each email (so
it will be inside a plate across the emails). Since this variable will always be
observed, we always show it shaded in the factor graph (Figure 4.1). We also
introduce a continuous weight variable for the feature weight mentioned in the
assumption. Because this weight is fixed, it is the same for all emails and so lies
outside the emails plate. We can then model Assumption 3 by multiplying the
featureValue by the weight, using a deterministic multiplication factor and
storing the result in continuous score variable. The factor graph for a single
feature modelled in this way is shown in Figure 4.1.

emails

featureValue weight

score

Gaussian(0,1)

×

Figure 4.1: Factor graph for a single feature. Each email has a featureValue

which is multiplied by a single common weight to give a score for that email.
A positive weight means that the score increases if the feature value increases.
A negative weight means that the score decreases if the feature value increases.
A higher score corresponds to a higher probability that the email is replied to.

176 CHAPTER 4. UNCLUTTERING YOUR INBOX

In drawing the factor graph, we’ve had to assume some prior distribution
for weight. In this case, we have assumed that the weight is drawn from a
Gaussian distribution with zero mean, so that it is equally likely to be positive
or negative.

4 The weight for a feature is equally likely to be positive or negative.

We have also the prior distribution to be Gaussian with variance 1.0 (so the
standard deviation is also 1.0). This choice means that the weight will most often
be in the range from -1.0 to 1.0, occasionally be outside this in the range -2.0 to
2.0 and very occasionally be outside even that range (as we saw in Figure 3.4).
We could equally have chosen any value for the variance, which would have led
to different ranges of weight values so there is no implied assumption here. The
effect of this choice will depend on the feature values which multiply the weight
to give the score and also on how we use the score, which we will look at next.

We now have a continuous score variable which is higher for emails that
are more likely to be replied to and lower for emails that are less likely to
be replied to. Next we need to convert the score into a binary repliedTo

variable. A simple way to do this is to threshold the score – if it is above some
threshold then repliedTo is true, otherwise false. We can do this by adding
a continuous threshold variable and use the deterministic GreaterThan factor
that we met in the previous chapter:

emails

featureValue weight

thresholdscore

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

>

Figure 4.2: Factor graph of Figure 4.1 extended so that if the score is greater
than a threshold the binary repliedTo variable is true, otherwise it is false.

Here we’ve chosen a Gaussian(0, 10) prior for the threshold – we’ll dis-
cuss this choice of prior shortly. Now suppose we try to train this one-feature
model on the training set for one of our users. We can train the model using
probabilistic inference as usual. First we fix the value of repliedTo for each

4.2. A MODEL FOR CLASSIFICATION 177

email (by seeing if the user actually did reply to the email)and also the ToLine
featureValue – which is always available since we can calculate it from the
email To line. Given these two observed values for each email, we can train by
inferring the posterior distributions for weight and threshold.

Unfortunately, if we attempt to run inference on this model then any in-
ference algorithm we try will fail. This is because some of the observed values
have zero probability under the model. In other words, there is no way that
the data-generating process encoded by our model could have generated the
observed data values. When your data has zero probability under your model,
it is a sure sign that the model is wrong!

The issue is that the model is wildly overconfident. For any weight and
threshold values, it will always predict repliedTo to be true with 100% cer-
tainty if the score is greater than the threshold and predict repliedTo to be
false with 100% certainty otherwise. If we plot the reply probability against the
score, it abruptly moves from 0% to 100% as the score passes the threshold

(see the blue line in Figure 4.3). We will only be successful in training such a
model if we are able to find some weight and threshold that perfectly classifies
the training set – in other words gives a score above the threshold for all
replied-to training emails and a score below the threshold for all emails that
were not replied to. As an example, this would be possible if the user replied
to every single email where they were on the To line and did not reply to every
single other email. If there is even a single email where this is not the case, then
its observed label will have zero probability under the model. For example, sup-
pose a not-replied-to email has a score above the threshold – the prediction
will be that repliedTo is true with probability 1.0 and so has zero probability
of being false. But in this case repliedTo is observed to be false, which has
zero probability and is therefore impossible under the model.

Looking back, Assumption 2 said that the reply probability would always
be higher for emails with a higher score. But in fact, in our current model, this
assumption does not hold – if we have two positive scores one higher than the
other, they will both have the same 100% probability of reply. So our model
is instead encoding the assumption that the reply probability abruptly changes
from 0 to 100% as the score increases – it is this overly strong assumption that
is causing training to fail.

Adding noise to a model can be helpful when
it does not perfectly represent the data.

To better represent Assumption 2 ,
we need the reply probability to increase
smoothly as the score increases. The red
curve in Figure 4.3 shows a much smoother
relationship between the score and the reply
probability. This curve may look familiar to
you, it is the cumulative density function for
a Gaussian distribution, like the ones that
we saw in Figure 3.9 in the previous chap-
ter. We’d like to change our model to use
this smooth curve. We can achieve this by
adding a Gaussian-distributed random value

178 CHAPTER 4. UNCLUTTERING YOUR INBOX

Score - Threshold

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Noiseless model

Noisy model

Figure 4.3: Plot of the predicted probability of reply as the score varies relative
to the threshold for the noiseless model of Figure 4.2 and a noisy score model
which adds Gaussian noise to the score before thresholding it. For the noiseless
model, the reply probability abruptly changes from 0.0 to 1.0 as the score passes
the threshold. In contrast, for the noisy model, the reply probability varies
smoothly from near 0.0 to near 1.0 over a range of score values (from about -8
to +8).

to the score before we threshold it. These
are called ‘noise’ values, because they take
the clean 0% or 100% prediction and make
it ‘noisy’. Now, even if the score is below the threshold, there is a small proba-
bility that the noisy version will be above the threshold (and vice versa) so that
the model can tolerate misclassified training examples. The exact probability
that this will happen will depend on how far the score is below the threshold and
the probability that the added Gaussian noise will push it above the threshold.
This probability is given by the cumulative density function for the Gaussian
noise, and so you end up with the curve shown in Figure 4.3.

Since the predicted probability varies smoothly from 0.0 to 1.0 over a range
of score values, the model can now vary the confidence of its predictions, rather
than always predicting 0% or 100%. The range of values that this happens over
(the steepness of the curve) is determined by the variance of the Gaussian noise.
The plot in Figure 4.3 is for a noise variance of 10, which is the value that we
will use in our model, for reasons we will discuss in a moment. So let’s add a
new continuous variable called noisyScore and give it a Gaussian distribution
whose mean is at score and whose variance is 10. This gives the factor graph
of Figure 4.4.

In choosing a variance of 10, we have set how much the score needs to
change in order to change the predicted probability. Remember that our weights
are normally in the range -1.0 to 1.0, sometimes in the range -2.0 to 2.0 and

4.2. A MODEL FOR CLASSIFICATION 179

emails

featureValue weight

threshold

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

Gaussian

>

Figure 4.4: Factor graph of a classification model with one feature. The model
uses a Gaussian factor to introduce uncertainty in the prediction of repliedTo
for a particular score.

occasionally outside this range. Looking at Figure 4.3 you can see that to change
the predicted probability from a ‘don’t know’ prediction of 50% to a confident
prediction of, say, 85% means that the score needs to change by about 3.0. If
we choose feature values in the range -1.0 to 1.0 (which we will), this means
that we are making the following assumption:

5 A single feature normally has a small effect on the reply probability, some-
times has an intermediate effect and occasionally has a large effect.

This assumption prevents our classification model from becoming too confident
in its predictions too quickly. For example, suppose the system sees a few emails
with a particular feature value, say ToLine=1.0, which are then all replied
to. How confident should the system be at predicting reply for the next email
with ToLine=1.0? The choice of noise variance encodes our assumption of this
confidence. Setting the noise variance to a high value means that the system
would need to see a lot of emails to learn a large weight for a feature and so would
make underconfident predictions. Setting the noise variance too low would have
the opposite effect and the system would make confident predictions after only
a few training emails. A variance of 10 is a suitable intermediate value that
avoids making either under- or over-confident predictions.

We can now try training this new model on the emails of one of our users, say,

180 CHAPTER 4. UNCLUTTERING YOUR INBOX

ToLine P(repliedTo=true)

0 0.008

1 0.112

(a)

ToLine Replied to Not replied to Frac�on replied to

0 19 3,046 0.006

1 111 824 0.119

(b)

Table 4.2: (a) Predicted probability of reply for our one-feature model, for each feature value. (b) For each
feature value: the number of emails that were replied to, the number of emails that were not replied to and the
fraction of emails that were replied to for the emails of User35CB8E5. Reassuringly, these fractions are close to
the predicted probabilities of the learned model.

User35CB8E5. As in chapter 3, we can use expectation propagation to perform
inference. This gives Gaussian distributions over weight and threshold of
Gaussian(3.77,0.028) and Gaussian(7.63,0.019) respectively.

We can now use these Gaussian distributions to make predictions on a new
email (or several emails), using online learning, as we saw in chapter 3. To do
this, we replace the priors over weight and threshold with the learned posterior
distributions. Then we fix the feature values for each email and run inference
to compute the marginal distribution over repliedTo. Since we’ve only got one
feature in our model and it only has two possible values, the model can only
make two possible predictions for the reply probability, one for each feature
value. Given the above Gaussian distributions for the weight and threshold,
the predicted probability of reply for the two values of the ToLine feature are
shown in Table 4.2a. As we might have expected, the predicted probability of
reply is higher when the user is on the To line (ToLine=1.0) than when the user
is not on the To line (ToLine=0.0).

To check whether these predicted probabilities are reasonable, we can com-
pute the actual fraction of emails with each feature value that were replied to in
the training set. The predicted probabilities should be close to these fractions.
The counts of replied-to and not-replied-to emails with each feature value are
shown in Table 4.2b, along with the fraction replied to computed from these
counts.

These computed fractions are very close to the predicted probabilities, which
gives us some reassurance that we have learned correctly from our data set.
Effectively, we have provided a long-winded way of learning the conditional
probability table given in Table 4.2a! However, if we want to use multiple
features in our model, then we cannot use a conditional probability table, since it
would become unmanageably large as the number of features increased. Instead,
we will use the score variables to provide a different, scalable approach for
combining features, as we will see in the next section.

4.2. A MODEL FOR CLASSIFICATION 181

Review of concepts introduced in this section

classification The task of predicting one of a fixed number of labels for a
given data item. For example, predicting whether or not a user will reply to a
particular email or whether a web site visitor will click on a particular link. So,
in classification, the aim is to make predictions about a discrete variable in the
model.

classifiers Systems that perform classification, in other words, which predict a
label for a data item (or a distribution over labels if the classifier is probabilistic).
Classifiers are probably the best known and most widely used machine learning
systems today.

feature set A set of features that together are used to transform a data item
into a form more suitable to use with a particular model or algorithm. Feature
sets are usually used with classifiers but can also be used with many other types
of models and algorithms.

feature A function which computes a value when given a data item. Features
can return a single binary or real value or can return multiple values. A feature
is usually used as part of a feature set to transform a data item into a form
more suitable to use with a particular model or algorithm.

conditional model A model which represents a conditional probability rather
than a joint probability. Conditional models require that the values of the
variables being conditioned on are always known. The advantage of a conditional
model is that the model can be simpler since it does not need to model the
variables being conditioned on.

182 CHAPTER 4. UNCLUTTERING YOUR INBOX

4.3 Modelling multiple features

With just one feature, our classification model is not very accurate at predicting
reply, so we will now extend it to handle multiple features. We can do this
by changing the model so that multiple features contribute to the score for
an email. We just need to decide how to do this, which involves making an
additional assumption:

6 A particular change in one feature’s value will cause the same change in
score, no matter what the values of the other features are.

Let’s consider this assumption applied to the ToLine feature and consider chang-
ing it from 0.0 to 1.0. This assumption says that the change in score due to this
change in feature value is always the same, no matter what the other feature
values are. This assumption can be encoded in the model by ensuring that the
contribution of the ToLine feature to the score is always added on to the con-
tributions from all the other features. Since the same argument holds for each
of the other features as well, this assumption means that the score for an email
must be the sum of the score contributions from each of the individual features.

So, in our multi-feature model (Figure 4.5), we have a featureScore array
to hold the score contribution for each feature for each email. We can then use
a deterministic summation factor to add the contributions together to give the
total score. Since we still want Assumption 3 to hold for each feature, the
featureScore for a feature can be defined, as before, as the product of the
featureValue and the feature weight. Notice that we have added a new plate
across the features, which contains the weight for the feature, the feature value
and the feature score. The value and the score are also in the emails plate, since
they vary from email to email, whilst the weight is outside since it is shared
among all emails.

We now have a model which can combine together an entire set of features.
This means we are free to put in as many features as we like, to try to predict
as accurately as possible whether a user will reply to an email. More than that,
we are assuming that anything we do not put in as a feature is not relevant to
the prediction. This is our final assumption:

7 Whether the user will reply to an email depends only on the values of the
features and not on anything else.

As before, now that we have a complete model, it is a good exercise to go
back and review all the assumptions that we have made whilst building the
model. The full set of assumptions is shown in Table 4.3.

Assumption 1 arises because we chose to build a conditional model, and so
we need to always condition on the feature values.

In our model, we have used the red curve of Figure 4.3 to satisfy Assump-
tion 2 . Viewed as a function that computes the score given the reply proba-
bility, this curve is called the probit function. It is named this way because the
units of the score have historically been called ‘probability units’ or ‘probits’.

4.3. MODELLING MULTIPLE FEATURES 183

features

emails

featureValue weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

×

+

Gaussian

>

Figure 4.5: Factor graph of a classification model with multiple features. Vari-
ables within the features plate are duplicated for each feature, so there is a
separate weight for each feature and, for each email, a separate featureValue

and featureScore. The featureScore values for each feature are summed to
give an overall score for each email.

Since regression is the term for predicting a continuous value (in this case,
the score) from some feature values, the model as a whole is known as a probit
regression model (or in its fully probabilistic form as the Bayes Point Machine
[Herbrich et al., 2001]). There are other functions that we could have used to
satisfy Assumption 2 – the most well-known is the logistic function, which
equals 1/(1+e−x) and has a very similar S-shape (see Figure 4.6 to see just how
similar!). If we had used the logistic function instead of the probit function, we
would have made a logistic regression model – a very widely used classifier. In
practice, both models are extremely similar – we used a probit model because
it allowed us to build on the factors and ideas that you learned about in the
previous chapter.

Assumption 3 , taken together with Assumption 6 , means that the score
must be a linear function of the feature values. For example, if we had two fea-
tures, the score would be weight1×featureValue1+weight2×featureValue2.
For any particular score, the feature values that give rise to that score lie on a

184 CHAPTER 4. UNCLUTTERING YOUR INBOX

1 The feature values can always be calculated, for any email.

2 Each email has an associated continuous score which is higher when
there is a higher probability of the user replying to the email.

3 If an email’s feature value changes by x, then its score will change by
weight × x for some fixed, continuous weight.

4 The weight for a feature is equally likely to be positive or negative.

5 A single feature normally has a small effect on the reply probability,
sometimes has an intermediate effect and occasionally has a large
effect.

6 A particular change in one feature’s value will cause the same change
in score, no matter what the values of the other features are.

7 Whether the user will reply to an email depends only on the values
of the features and not on anything else.

Table 4.3: The seven assumptions encoded in our classification model.

line in a plot of the first feature value against the second, which is why we use
the term linear. Any classifier based around a linear function is called a linear
classifier.

Assumption 4 and Assumption 5 are reasonable statements about how
features affect the predicted probability. However, Assumption 6 places some

Score - Threshold

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Logistic function

Gaussian CDF

Figure 4.6: The logistic function scaled horizontally to match the Gaussian CDF
from Figure 4.3. The similarity of the two functions means that our probit
regression model behaves very similarly to a logistic regression model.

4.3. MODELLING MULTIPLE FEATURES 185

subtle but important limitations on what the classifier can learn, which are
worth understanding. These are explored and explained in Panel 4.2.

Finally, Assumption 7 states that our feature set contains all of the in-
formation that is relevant to predicting whether a user will reply to an email.
We’ll see how to develop a feature set to satisfy this assumption as closely as
possible in the next section, but first we need to understand better the role that
the feature set plays.

4.3.1 Features are part of the model

To use our classification model, we will need to choose a set of features to
transform the data, so that it better conforms to the model assumptions of
Table 4.3. Another way of looking at this is that the assumptions of the combined
feature set and classification model must hold in the data. From a model-based
machine learning perspective, this means that the feature set combined with the
classification model form a larger overall model. In this way of looking at things,
the feature set is the part of this overall model that is usually easy to change
(by changing the feature calculation code) whereas the classification part is the
part that is usually hard to change (for example, if you are using off-the-shelf
classifier software there is no easy way to change it).

We can represent this overall combined model in a factor graph by including
the feature calculations in the graph, as shown in Figure 4.7. The email vari-
able holds all the data about the email itself (you can think of it as an email
object). The feature calculations appear as deterministic ComputeFeature fac-
tors inside of the features plate, each of which computes the feature value for
the feature, given the email. Notice that, although only email is shown as
observed (shaded), featureValue is effectively observed as well since it is de-
terministically computed from email.

186 CHAPTER 4. UNCLUTTERING YOUR INBOX

Panel 4.2 – How features combine together

Assumption 6 is quite a strong assumption about how features combine together. To investigate the effect
of this assumption, consider a two-feature model with the existing ToLine feature and a new feature called
FromManager . This new FromManager feature has a value of 1.0 if the sender is the user’s manager and 0.0
otherwise. Suppose a particular user replies to 80% of emails from their manager, but only if they are on the To
line. If they are not on the To line, then they treat it like any other email where they are on the Cc line. To
analyse such a user, we will create a synthetic data set to represent our hypothetical user’s email data. For email
where FromManager is zero, we will take User35CB8E5’s data set from Table 4.2b. We will then add 500 new
synthetic emails where FromManager is 1, such that the user is on the To line exactly half of the time, giving the
data set in the table below. The final column of this table gives the predicted probabilities for each combination
of features, for a model trained on this data.

ToLine FromManager Replied to Not replied to Frac�on replied to P(repliedTo=true)

0 0 19 3,046 0.006 0.004

1 0 111 824 0.119 0.144

0 1 2 248 0.008 0.108

1 1 200 50 0.800 0.646

There is quite a big difference between the predicted probability of reply and the actual fraction replied to.
For example, the predicted probability for emails from the user’s manager where the user is on the To line is
much too low: 64.6% not 80%. Similarly, the prediction is too high (10.8% not 0.8%) for emails from the user’s
manager where the user is not on the To line. These inaccurate predictions occur because there is no setting of
the weight and threshold variables that can make the predicted probability match the actual reply fraction.
Assumption 6 says the change in score for FromManager must be the same when ToLine is 1.0 as for when
ToLine is 0.0. But, to match the data, we need the change in score to be higher when ToLine is 1.0 than when
it is 0.0.
Rather than changing the model to remove Assumption 6 , we can work around this limitation by adding a new
feature that is 1.0 only if ToLine and FromManager are both 1.0 (an AND of the two features). This new feature
will have its own weight associated with it, which means there can now be a different score for manager emails
when the user is on the To line to when they are not on the To line. If we train such a three-feature model, we
get the new predictions shown here:

ToLine FromManager And Replied to Not replied to Frac�on replied to P(repliedTo=true)

0 0 0 19 3,046 0.006 0.007

1 0 0 111 824 0.119 0.119

0 1 0 2 248 0.008 0.024

1 1 1 200 50 0.800 0.766

The predicted probabilities are now much closer to the actual reply fractions in each case, meaning that the
new model is making more accurate predictions than the old one. Any remaining discrepancies are due to
Assumption 5 , which controls the size of effect of any single feature.

4.3. MODELLING MULTIPLE FEATURES 187

f : features

emails

email

featureValue weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

Gaussian(0,1)

Gaussian(0,10)

ComputeFeature(·,f)

×

+

Gaussian

>

Figure 4.7: Factor graph of a model which includes both feature calculation
and classification. The ComputeFeature factor takes as arguments the current
feature f and the email being considered and computes the value of feature f
for that email.

If the feature set really is part of the model, we must use the same approach
for designing a feature set, as for designing a model. This means that we need
to visualise and understand the data, be conscious of assumptions being rep-
resented, specify evaluation metrics and success criteria, and repeatedly refine
and improve the feature set until the success criteria are met (in other words,
we need to follow the machine learning life cycle). This is exactly the process
we will follow next.

Review of concepts introduced in this section

regression The task of predicting a real-valued quantity (for example, a house
price or a temperature) given the attributes of a particular data item (such as a
house or a city). In regression, the aim is to make predictions about a continuous
variable in the model.

logistic function The function f(x) = 1/(1 + e−x) which is often used to
transform unbounded continuous values into continuous values between 0 and
1. It has an S-shape similar to that of the cumulative Gaussian (see Figure 4.6).

188 CHAPTER 4. UNCLUTTERING YOUR INBOX

linear function Any function of one or more variables f(x1, . . . , xk) which can
be written in the form f(x1, . . . , xk) = a+ b1x1 + . . .+ bkxk. A linear function
of just one variable can therefore be written as f(x) = a + bx. Plotting f(x)
against x for this equation gives a straight line which is why the term linear is
used to describe this family of functions.

4.4. DESIGNING A FEATURE SET 189

4.4 Designing a feature set

To use our classification model, we need to choose a set of features to transform
the data, so that it conforms as closely as possible to the assumptions built into
the model (Table 4.3). For example, to satisfy Assumption 7 (that features
contain all relevant information about the user’s actions) we need to make sure
that our feature set includes all features relevant to predicting reply. Since
pretty much any part of an email may help with making such a prediction, this
means that we will have to encode almost all aspects of the email in our features.
This will include who sent the email, the recipients of the email on the To and
Cc lines, the subject of the email and the main body of the email, along with
information about the conversation the email belongs to.

When designing a new feature, we need to ensure that:

• the feature picks up on some informative aspect of the data,

• the feature output is of the right form to feed into the model,

• the feature provides new information about the label over and above that
provided by existing features.

In this section, we will show how to design several features for our feature set,
while ensuring that they meet the first two of these criteria. In the next section
we will show how to check the third criterion by evaluating the system with and
without certain features.

4.4.1 Features with many states

So far, we have represented where the user appears on the email using a ToLine
feature. This feature has only two states: the user is either on the To line or
not. So the feature ignores whether the user is on the Cc line, even though
we might expect a user to be more likely to reply to an email if they appear
on the Cc line than if they do not appear at all. The feature also ignores the
position of the user on the To/Cc line. If the user is first on the To line we
might expect them to be more likely to reply than if they are at the end of
a long list of recipients. We can check these intuitions using our data set by
finding the actual fraction of all training/validation emails that were replied to
in a number of cases: when the user is first, second or later than second on the
To line, when the user is first or elsewhere on the Cc line and when the user is
not on either the To or Cc lines (for example, if they received the email via a
distribution list). Figure 4.8 shows a plot of these fractions, showing that the
probability of reply does vary substantially depending on which of these cases
applies. This plot demonstrates that a feature that was able to distinguish
these cases would indeed pick up on an informative aspect of the data (our first
criterion above). When assessing reply fractions, such as those in Figure 4.8,
it is important to take into account how many emails the fraction is computed
from, since a fraction computed from a small number of emails would not be

190 CHAPTER 4. UNCLUTTERING YOUR INBOX

very accurate. To check this, in Figure 4.8 we show the number of emails in
brackets below each bar label, demonstrating that each has sufficient emails to
compute the fraction accurately and so we can rely on the computed values.

ToCcPosition

Not On

To Or Cc

Line

(13961)

First On

To Line

(6783)

Second

On To

Line

(994)

Third Or

Later On

To Line

(949)

First On

Cc Line

(691)

Second

Or Later

On Cc

Line

(603)

0

0.1

0.2

0.3

0.4

Figure 4.8: Fraction of emails that were replied to, for each of six possible
positions of the user on the To or Cc line. The number of emails with the user
in each position is shown in brackets (the fraction replied to is a fraction of these
emails that were replied to). The plot shows that, for our data set, being first
on the To line indicates the highest probability of reply, but that this reduces
if the user is second or later. It also shows that if the user is not mentioned on
the To or Cc line, the reply probability is very low.

We can improve our feature to capture cues like this by giving it mul-
tiple states, one for each of the bars of Figure 4.8. So the states will be:
{NotOnToOrCcLine, FirstOnToLine, SecondOnToLine, ThirdOrLaterOnToLine,
FirstOnCcLine, SecondOrLaterOnCcLine}. Now we just need to work out what
the output of the feature should be, to be suitable for our model (the second
criterion). We could try returning a value of 0.0 for NotOnToOrCcLine, 1.0 for
FirstOnToLine and so on up to a value of 5.0 for SecondOrLaterOnCcLine.
But, according to Assumption 3 (that the score changes by the weight times
the feature value) this would mean that the probability of reply would either
steadily increase or steadily decrease as the value changes from 0.0 through to
5.0. However, Figure 4.8 shows that this is not the case since the reply fraction
goes up and down as we go from left to right, and so such an assumption would
be incorrect. In general, we would want to avoid making assumptions which
depend on the ordering of some states that do not have an inherent ordering,
such as in this case. Instead we would like to be able to learn how the reply
probability is affected separately for each state.

To achieve this we can modify the feature to output multiple feature values,
one for each state, where the value is 1.0 for the state that applies to a particular
email and 0.0 for all other states. So an email where the user is first on the

4.4. DESIGNING A FEATURE SET 191

To line would be represented by the feature values {0.0, 1.0, 0.0, 0.0, 0.0, 0.0}.
Similarly an email where the user is first on the Cc line would be represented by
the feature values {0.0, 0.0, 0.0, 0.0, 1.0, 0.0}. By doing this, we have effectively
created a group of related binary features – however it is much more convenient
to think of them as a single ToCcPosition feature which outputs multiple values.
To avoid confusion in terminology, we will refer to the dif-
ferent elements of such a feature as feature buckets – so
the ToCcPosition feature contains 6 feature buckets. Using
this terminology, the plate across the features in our factor
graph should now be interpreted as being across all buckets
of all features, so that each bucket has its own featureValue

and its own associated weight. This means that the weight

can be different for each bucket of our ToCcPosition feature
and so we are no longer assuming that the reply probability
steadily increases or decreases across the buckets.

4.4.2 Numeric features

We also need to create features that encode numeric quanti-
ties, such as the number of characters in the email body. If we used the number
of characters directly as the feature value, we would be assuming that longer
emails mean either always higher or always lower reply probability than shorter
emails. But in fact we might expect the user to be unlikely to respond to a very
short email (“Thanks”) or a very long email (such as a newsletter), but may
be likely to respond to emails whose length is somewhere in between. Again,
we can investigate these beliefs by plotting the fraction of emails replied to for
various body lengths. To get a useful plot, it is necessary to divide body lengths
for longer emails into bins, in order to get enough emails to estimate the reply
fraction reliably. In Figure 4.9, we have used bins such that each bin is roughly
double the size of the previous one, along with a catch-all bin for all very long
emails (more than 1023 characters).

192 CHAPTER 4. UNCLUTTERING YOUR INBOX

BodyLength

0

(103)

1-4

(90)

5-8

(135)

9-16

(243)

17-32

(541)

33-64

(1177)

65-128

(2287)

129-256

(3206)

257-512

(3930)

513-1023

(6250)

>1023

(6019)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.9: Fraction of emails that were replied to, for various ranges of body
lengths, given by the number of characters in the email body. The number of
emails falling into each bin is shown in brackets. Zero-length emails are likely
to have their message in the subject line and so have quite a high reply fraction.
For other emails, the reply fraction peaks at around 9-16 characters and then
generally decreases, until it is very low for very long emails.

There are several aspects of this plot that are worthy of comment. Zero-
length emails have a quite high reply probability, probably because these are
emails where the message was in the subject. As we anticipated, very short
emails have relatively low reply probability and this increases to a peak in the
9-16 characters and is then roughly constant until we get to very long emails
of 513 characters or more where the reply probability starts to tail off. To pick
up on these changes in the probability of reply, we can use the same approach
as we just used for ToCcPosition and treat each bin of our plot as a different
feature bucket. This gives us a BodyLength feature with 11 buckets. Emails
whose length fall into a particular bin, such as 33-64 characters, all map to a
single bucket. This mapping encodes the assumption that the reply probability
does not depend on the exact body length but only on which bin that length
falls into.

4.4.3 Features with many, many states

We might expect that the sender of an email would be one of the most useful
properties for predicting whether a user will reply or not. But why rely on belief,
when we can use data? Figure 4.10 shows the fraction of emails replied to for
the twenty most frequent senders for User35CB8E5. As you can see there is
substantial variation in reply fraction from one sender to another: some senders
have no replies at all, whilst others have a high fraction of replies. A similar
pattern holds for the other users in our data set. So indeed, the sender is a very
useful cue for predicting reply.

4.4. DESIGNING A FEATURE SET 193

Sender

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.10: Fraction of emails replied to for the 20 most common senders for
User35CB8E5 (the number of emails from each sender is shown in brackets).
Reply fraction varies significantly from sender to sender, indicating that this is
a very useful cue for predicting reply. As discussed in section 4.1, the sender
identities have been anonymised to preserve the privacy of the user.

To incorporate the sender information into the feature set, we can use a
multi-state Sender feature, with one state for each sender in the data set. For
example, User35CB8E5 has 658 unique senders in the training and validation
sets combined. This would lead to a feature with 658 buckets of which 657
would have value 0.0 and the bucket corresponding to the actual sender would
have value 1.0. Since so many of the feature bucket values would be zero, it
is much more efficient to change our factor graph to only include the feature
buckets that are actually ‘active’ (non-zero). A suitably modified factor graph
is shown in Figure 4.11.

194 CHAPTER 4. UNCLUTTERING YOUR INBOX

buckets

emails

indices

featureIndices

featureValue

weight

threshold

featureScore

score

noisyScore

10 (variance)

repliedTo

featureWeight

Gaussian(0,1)

Gaussian(0,10)

Subarray

×

+

Gaussian

>

Figure 4.11: Modified factor graph which represents only non-zero feature buck-
ets. The featureIndices variable contains the indices of feature buckets that
have non-zero values. The featureValues variable contains the corresponding
values for those buckets. The Subarray factor is used to pull out the relevant
elements of the weight array, which are placed into the featureWeight array.

In this modified graph, the feature values for an email are represented by
the indices of non-zero values (featureIndices) along with the corresponding
values at these indices (featureValues). We use the Subarray factor that we
introduced back in section 2.4 to pull out the weights for the active buckets
(featureWeight) from the full weights array (weight). This new factor graph
allows features like the Sender feature to be added without causing a substan-
tial slow-down in training and classification times. For example, training on
User35CB8E5’s training set takes 9.2 seconds using the old factor graph but
just 0.43 seconds using this new factor graph. This speed up would be even
greater if we had trained on more emails, since there would be more unique
senders.

4.4. DESIGNING A FEATURE SET 195

4.4.4 An initial feature set

Now that we know how to encode all the different types of data properties,
we can complete our initial feature set, ready to start experimenting with.
To encode remaining data properties, we add three further features: FromMe,
HasAttachments and SubjectLength whose feature buckets and reply fractions
are shown in Figure 4.12.

False

(23428)

True

(553)

0

0.1

0.2

0.3

0.4

(a) FromMe

False

(22547)

True

(1434)

0

0.1

0.2

0.3

0.4

(b) HasAttachments

0

(52)

1-2

(21)

3-4

(128)

5-8

(480)

9-16

(2340)

17-32

(7494)

33-64

(9725)

>64

(3741)

0

0.1

0.2

0.3

0.4

(c) SubjectLength

Figure 4.12: Fraction of emails that were replied to for each feature bucket, for
the three new features. The number of emails falling into each feature bucket
is shown in brackets.

As we discussed back in section 4.1, we removed the content of the subject
lines and email bodies from the data set and so cannot add any features to en-
code the actual words of the subject or of the email body. To build the classifier
for the Exchange project, anonymised subject and body words were used from
voluntarily provided data. As you might expect, including such subject and
body word features did indeed help substantially with predictive accuracy.

Our initial feature set, with six features, is shown in Table 4.4.

196 CHAPTER 4. UNCLUTTERING YOUR INBOX

Descrip�on #Buckets

FromMe Whether the message is from you 1

ToCcPosi�on Your posi�on on the To or Cc lines 6

HasA#achments Whether the message has a#achments 1

BodyLength The number of new characters in the body text 11

SubjectLength The number of characters in the subject 8

Sender Who the message is from (varies)

Table 4.4: An initial set of features for predicting reply on an email. For each
feature, we show the feature type, a brief description and the number of feature
buckets for that feature (where this number is fixed).

Now that we have a classification model and a feature set, we are ready to
see how well they work together to predict whether a user will reply to a new
email.

Review of concepts introduced in this section

feature buckets Labels which identify the values for a feature that re-
turns multiple values. For example, the ToCcPosition feature in Figure 4.8
has six feature buckets: NotOnToOrCcLine, FirstOnToLine, SecondOnToLine,
ThirdOrLaterOnToLine, FirstOnCcLine and SecondOrLaterOnCcLine. For
this feature the value associated with one of the buckets will be 1.0 and the
other values will be 0.0, but for other features multiple buckets may have non-
zero values.

4.5. EVALUATING AND IMPROVING THE FEATURE SET 197

4.5 Evaluating and improving the feature set

Using our newly-completed model and feature set, we can train a personalised
classifier for each user in our data set. To be precise, for each user’s training set,
we compute the active feature buckets featureIndices for each email, along
with their feature values featureValue. Given these observed variables, we can
then apply expectation propagation to learn a posterior weight distribution
for each bucket, along with a single posterior distribution over the value of the
threshold. But first we need to look at how to schedule message passing for
our model.

4.5.1 Parallel and sequential schedules
Inference

Inference deep-dive
In this optional section, we look at how to schedule the expectation propagation
messages for our model. If you want to go straight to look at the results of
running expectation propagation, feel free to skip this section.

When running expectation propagation in this model, it is important to
choose a good message-passing schedule. In this kind of model, a poor schedule
can easily cause the message-passing algorithm to fail to converge or to converge
very slowly. When you have a model with repeated structures (such as our
classification model), there are two main kinds of message-passing schedule that
can be used: sequential or parallel. To understand these two kinds of schedule,
let’s look at message passing on a simplified form of our model with two features
and two weights:

B1A1 B2A2

B1A1

B1

A1

B2A2

B2

A2

BA

BA

featureValue1 featureValue2

weight1 weight2

featureScore1 featureScore2

score

Gaussian(0,1) Gaussian(0,1)

× ×

+

In this figure, rather than using a plate across the buckets, we have instead
duplicated the part of the model for each weight. When doing message passing
in this model, two choices of schedule are:

198 CHAPTER 4. UNCLUTTERING YOUR INBOX

• A sequential schedule which processes the two weights in turn. For the
first weight, this schedule passes messages in the order A, A1, B1, B. After
processing this weight, message-passing happens in the bottom piece of
the graph (not shown). The schedule then moves on to the second weight,
passing messages in the order A, A2, B2, B.

• A parallel schedule which processes the two weights at once. In this sched-
ule, first the messages marked A are passed. Then both sets of messages
(A1 and B1) and (A2 and B2) are passed, where the messages from the
plus factor are computed using the previous B1 and B2 messages. Finally,
the message marked B are passed.

To see the difference between the two schedules, look at how the first A2 message
coming out of the plus factor is calculated. In the sequential schedule, it is
calculated using the B1 message that has just been updated in this iteration of
the schedule. In the parallel schedule, it uses the B1 message calculated in the
previous iteration, in other words, an older version of the message. As a result,
the parallel schedule converges more slowly than the sequential schedule and is
also more likely to fail to converge at all. So why would we ever want to use a
parallel schedule? The main reason is if you want to distribute your inference
computation in parallel across a number of machines in order to speed it up. In
this case, the best option is to use a combined schedule which is sequential on
the section of model processed within each machine but which is parallel across
machines.

4.5.2 Visualising the learned weights

To ensure this sequential schedule is working well, we can visualise the learned
weight distributions to check that they match up to our expectations. Fig-
ure 4.13 shows the learned Gaussian distributions over the weights for each
feature bucket for User35CB8E5 (to save space, only the fifteen most frequent
Sender weights are shown).

Looking at each weight in turn, we can see that more positive weights gener-
ally correspond to those feature buckets that we would expect to have a higher
probability of reply, given the histograms in the previous section. For exam-
ple, looking at the SubjectLength histogram of Figure 4.12c, you can see that
the positive and negative learned weights correspond to the peaks and troughs
of the histogram. You can also see that the error bars are narrower for com-
mon feature buckets like SubjectLength[33-64] than for rare feature buckets like
SubjectLength[1-2]. This is to be expected since, if there are fewer emails with
a particular feature bucket active, there is less information about the weight for
that bucket and so the learned weight posterior is more uncertain. For very rare
buckets, there are so few relevant emails in the training set that we should ex-
pect the weight posterior to be very close to the Gaussian(0,1) prior. You can
see this is true for SubjectLength[1-2], for example, whose weight mean is close

4.5. EVALUATING AND IMPROVING THE FEATURE SET 199

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

Sender[User53E8860]

Sender[User1E1C87C]

Sender[User51042C4]

Sender[UserF92C2B9]

Sender[UserCBBD2F6]

Sender[User6D93A4B]

Sender[User3F9EE1F]

Sender[User79FA995]

Sender[UserED3CD0C]

Sender[User6C97BBB]

Sender[UserE804D5C]

Sender[UserE77183]

Sender[UserFEE6D90]

Sender[User1961596]

Sender[User584AE2F]

Weight

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Figure 4.13: Learned Gaussian distributions over the feature bucket weights for
User35CB8E5. For each feature bucket, the blue bar indicates the mean of the
Gaussian weight distribution showing how much the system expects the feature
bucket to increase or decrease the score for an email. The error bars indicate the
uncertainty in this learned value by showing plus/minus one standard deviation
around the mean.

200 CHAPTER 4. UNCLUTTERING YOUR INBOX

to 0.0 and whose standard deviation is close to 1.0. So, overall, manual inspec-
tion of the learned weights is consistent with what we might expect. Inspecting
the learned weights of other users also show plausible weight distributions.

Had we found some unexpected weight values here, the most likely expla-
nation would be a bug in the feature calculation. However, unexpected weight
values can also uncover faulty intuitions about the kinds of email a user is likely
to reply to, or even allow us to discover new types of email reply behaviour that
we might not have guessed at.

4.5.3 Evaluating reply prediction

Using the trained model for each user, we can now predict a reply probability
for each email in the user’s validation set. As we saw in chapter 2, we can plot
an ROC curve to assess the accuracy of these predictions. Doing this for each
user, gives the plots in Figure 4.14.

These curves look very promising – there is some variation from user to user,
but all the curves are all up in the top left of the ROC plot where we want them
to be. But do these plots tell us what we need to know? Given that our aim is
to identify emails with particular actions (or lack of actions), we need to know
two things:

1. Out of all replied-to emails, what fraction do we predict will be replied to?

This is the true positive rate, which the ROC curve is already giving us on its
y-axis. In this context, the true positive rate is also referred to as the recall
since it measures how many of the replied to emails were successfully ‘recalled’
by the system.

2. Out of emails that we predict will be replied to, what fraction actually are?

This is a new quantity called the precision and is not shown on the ROC
curve. Note that this is a different meaning of the word precision to its use as
a parameter describing the inverse variance of a Gaussian – it is usually clear
from the context which meaning is intended. To visualise the precision we must
instead use a precision-recall curve (P-R curve) which is a plot of precision on
the y-axis against recall on the x-axis. Figure 4.15 shows precision-recall curves
for exactly the same prediction results as for the ROC curves in Figure 4.14.
To get a summary accuracy number for a precision-recall curve, similar to the
area under an ROC curve, we can compute the average precision (AP) across
a range of recalls – these are shown in the legend of Figure 4.15. Precision-
recall curves tend to be very noisy at the left hand end since at this point the
precisions are being computed from a very small number of emails – for this
reason, we compute the average precision between recalls of 0.1 and 0.9 to give
a more stable and reliable accuracy metric. Omitting the right hand end of
the plot as well helps correct for the reduction in average precision caused by
ignoring the left hand end of the plot.

Compare the ROC and precision-recall curves – once again we can see the
value of using more than one evaluation metric: the precision-recall curves tell

4.5. EVALUATING AND IMPROVING THE FEATURE SET 201

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User35CB8E5 (AUC=91.0%) UserCE3FDB4 (AUC=89.1%)

User6AACED (AUC=91.4%) User7E601F9 (AUC=80.2%)

User68251CD (AUC=87.3%) User223AECA (AUC=90.1%)

UserFF0F29E (AUC=86.2%) User25C0488 (AUC=83.1%)

User811E39F (AUC=81.9%) User10628A6 (AUC=87.6%)

Random (AUC=50.0%)

Figure 4.14: ROC curves for each user in our data set computed using predic-
tions on the user’s validation set. The legend gives the area under the curve
(AUC) for each user.

a very different story! They show that there is quite a wide variability in the
precision we are achieving for different users, and also that the users with the
highest precision-recall curves (such as User68251CD) are not the same users
that have the highest ROC curves (such as User6AACED). So what’s going on?

To help understand the difference, consider a classifier that predicts reply
or no-reply at random. The ROC curve for such a classifier is the diagonal line
labelled ‘Random’ in Figure 4.14. To plot the P-R curve for a random classifier,
we need to consider that it will classify some random subset of emails as being
positives, so the fraction of these that are true positives (the precision) is just
the fraction of emails that the user replies to in general. So if a user replies to
20% of their emails, we would expect a random classifier to have a precision of

202 CHAPTER 4. UNCLUTTERING YOUR INBOX

Recall (true positive rate)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User35CB8E5 (AP=52.1%, reply=3.7%) UserCE3FDB4 (AP=35.8%, reply=6.0%)

User6AACED (AP=45.0%, reply=3.2%) User7E601F9 (AP=53.5%, reply=22.5%)

User68251CD (AP=61.4%, reply=23.6%) User223AECA (AP=50.9%, reply=9.6%)

UserFF0F29E (AP=29.3%, reply=5.4%) User25C0488 (AP=32.5%, reply=9.6%)

User811E39F (AP=25.3%, reply=8.2%) User10628A6 (AP=47.3%, reply=12.6%)

Figure 4.15: Precision-recall curves for the same prediction results as the ROC
curves of Figure 4.14. The legend gives the average precision (AP) for each user,
along with the percentage of validation set emails that were replied to by that
user.

20%. If another user replies to 2% of their emails, we may expect a random
classifier to have a precision of 2%. The fraction of emails that each of our users
replies to is given in the legend of Figure 4.15, following the average precision.
User68251CD replies to the highest percentage of emails 23.6% which means we
might expect it to be easier to get higher precisions for that user – and indeed
that user has the highest average precision, despite having an intermediate ROC
curve. Conversely, User6AACED, who has one of the highest ROC curves, has
only a middling P-R curve, because this user only replies to 3.2% of their email.
Given that our two error metrics are giving us different information, how can we
use them to assess success? How can we set target values for these metrics? The
answer lies in remembering that we use metrics like AP and AUC only as a proxy
for the things that we really care about – user happiness and productivity. So we

4.5. EVALUATING AND IMPROVING THE FEATURE SET 203

need to understand how the values of our metrics map into the users’ experience
of the system.

4.5.4 Understanding the user’s experience

Once the system is being beta tested by large num-
bers of users, we can use explicit feedback (for ex-
ample, questionnaires) or implicit feedback (for ex-
ample, how quickly people process their email or
how many people turn off the feature) to assess how
happy/productive users are for particular values of
the evaluation metrics. During the early stages of
developing the system, however, we must use our
own judgement of how well the system is working
on our own emails.

To understand how our evaluation metrics map into a real user’s experience,
it is essential to get some users using the system as soon as possible, even if
these users are just team members. To do this, we need a working end-to-end
system, including a user interface, that can be used to evaluate qualitatively
how well the system is performing. Having a working user interface is particu-
larly important since the choice of user interface imposes requirements on the
underlying machine learning system. For example, if emails are to be removed
from a user’s inbox without giving any visual indication, then a very high pre-
cision is essential. Conversely, if emails are just to be gently de-emphasised but
left in place, then a lower precision can be tolerated, which allows for a higher
recall. These examples show that the user interface and the machine learning
system need to be well matched to each other. The user interface should be
designed carefully to tolerate any errors made by the machine learning compo-
nent, whilst maximising its value to the user (see Patil [2012]). A well-designed
user interface can easily make the difference between users adopting a particular
machine learning system or not.

For our purposes, we need a user interface that emulates an email client but
which also displays the reply prediction probability in some visual way. Fig-
ure 4.16 shows a suitable user interface created as an evaluation and debugging
tool.

The tool has a cut-off reply probability threshold which can be adjusted
by a slider – emails with predicted reply probabilities above this threshold are
predicted to be replied to and all other emails are predicted as not being replied
to. The tool also marks which emails were correctly classified and which were
false positives or false negatives, given this cut-off threshold. The use of a
threshold on the predicted probability again emphasises the importance of good
calibration. If the calibration of the system is poor, or varies from user to
user, then it makes it much harder to find a cut-off threshold that gives a good
experience. The calibration of our predictions can be plotted and evaluated, as
described in Panel 4.3.

For debugging purposes, the tool shows the feature buckets that are active

204 CHAPTER 4. UNCLUTTERING YOUR INBOX

Panel 4.3 – Calibration

A machine learning system is well-calibrated if the predicted probabilities it
gives are accurate. For example, if a well-calibrated system predicts an event
with a probability of 90%, then we should expect this event to happen 90% of
the time. It is important to evaluate the calibration of any machine learning
system because:

• We often need to be able to trust the probabilities coming from the system.
For example, they may be used to drive a user interface which varies with
the probability of the prediction (such as only marking emails above a
certain probability). Accurate probabilities are especially important if
they are to be used as input to another machine learning system.

• If a machine learning system is poorly calibrated then it suggests a prob-
lem either in the model (such as an overly restrictive assumption) or in
the approximate inference. Fixing this problem will not only improve
calibration but also usually improve prediction accuracy as well.

We can use a calibration plot to evaluate how well-calibrated our email model
is. To do this we take all the validation set predictions made for each user and
divide them into bins according to the predicted probability of reply (0-10%,11-
20% and so on). For each bin, we then compute the fraction of emails that were
actually replied to (we discard bins with too few emails, since then this fraction
would be very noisy). Finally, we plot the average of this fraction across users
against the predicted probability, as shown below.

Predicted probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Perfect calibration

Average (RMSE=0.094)

The plot also shows the line for a perfectly calibrated system, which is a di-
agonal line. Our system is reasonably well-calibrated (within about 0.1 of this
diagonal). We can get an overall calibration metric by measuring how far we
are from this diagonal using – for example, using a root-mean-squared-error
(RMSE) difference, which for our system gives 0.094.

4.5. EVALUATING AND IMPROVING THE FEATURE SET 205

Figure 4.16: Screenshot of the user interface of the evaluation and debugging tool which allows the accuracy
of the system to be assessed on real emails. The tool also exposes the calculated features, learned weights and
predicted reply probability for each email, which makes it easier to debug the system. The coloured background
of the reply probabilities indicates whether the prediction is a true positive (green), false positive (orange) or
true negative or false negative for the current cut-off threshold. To preserve the privacy of the user whose emails
are shown here, the content of the emails have been hidden and the identities of all senders and recipients have
been anonymised.

for each email along with the corresponding feature value and learned weight
distribution. This is extremely helpful for checking that the feature computation
is correct, since the original email and computed features are displayed right next
to each other.

Using this tool, we can assess qualitatively how well the system is working
for a particular threshold on the reply probability. Looking at a lot of different
emails, we find that the system seems to be working very well, despite the
apparently moderate precision. This is because a proportion of the apparent
incorrect predictions are actually reasonable, such as:

206 CHAPTER 4. UNCLUTTERING YOUR INBOX

• False positives where the user “responded” to the email, but not by directly
replying. This could be because they responded to the sender without us-
ing email, (for example: in person, on the phone or via instant messaging)
or responding by writing a fresh email to the sender or by replying to a
different email.

• False positives where the user intended to reply, but forgot to or didn’t
have time.

• False negatives where a user replied to an email, as a means of replying
to an email earlier in the conversation thread.

• False negatives where a user replied to an email and deleted the con-
tents/subject as a way of starting a new email to the sender.

In all four of these cases the prediction is effectively correct: in the first two
cases this is an email that the user would want to reply to and in the last two
it is not. The issue is that the ‘ground truth’ label that we have for the item is
not correct, since whether or not a user wanted to reply to an email is assumed
to be the same as whether they actually did. But in these four cases, it is not.
Later in the chapter we will look at how to deal with such noisy ground truth
labels.

Since the ground truth labels are used to evaluate the system, such incorrect
labels can have a big detrimental effect on the measured accuracy. For example,
if 25% of positive emails are incorrectly labelled as negatives, then the mea-
sured precision of a perfect classifier would be only 75% rather than 100%. If
5% of negative emails are also incorrectly labelled as positive then, for a user
who replies to 10% of their emails, the recall of a perfect classifier would be just
62.5%! To see where this number came from, consider 1000 emails received by
the user. The user would reply to 100 of these emails (10%) and so would not
reply to 900 emails. Of the replied-to emails, only 75% (=75 emails) would be
labelled positive and of the not-replied-to emails, 5% of 900 = 45 emails would
be incorrectly labelled positive. So a perfect classifier would make positive pre-
dictions on 75 of the 75+45=120 emails that were labelled as positive, meaning
that the measured recall would be 75

120 = 62.5%.

However, even taking into account noisy ground truth labels, there are still
a number of incorrect predictions that are genuinely wrong. Examples of these
are:

1. False negatives where the email is a reply to an email that the user sent,
but the sender is new or not normally replied to.

2. False negatives where the email is a forward, but the sender is new or not
normally replied to.

3. False negatives for emails to a distribution list that the user owns or
manages and so is likely to reply to.

4.5. EVALUATING AND IMPROVING THE FEATURE SET 207

No

Prefix

(11746)

Re

(11381)

Fw

(682)

Other

(172)

0

0.1

0.2

0.3

0.4

Figure 4.17: Fraction of emails that were replied to where the email had different
subject prefixes (re,fw/fwd), an unknown prefix (other) or no prefix at all.

4. False positives for newsletter/marketing/social network emails (sometimes
known as ‘graymail’) sent directly to the user, particularly where the
sender is new.

We will now look at how to modify the feature set to address some of these
incorrect predictions.

4.5.5 Improving the feature set

The first two kinds of incorrect prediction are false negative predictions where
the email is a reply to an email from the user or a forward of an email to the
user. These mistakes occur because no existing feature distinguishes between
these cases and a fresh email coming from the same sender – yet if the email is
a reply or forward, there is likely to be a very different reply probability. This
violates Assumption 7 , that is, whether the user will reply or not depends
only on the feature values. To fix this issue, we need to introduce a new feature
to distinguish these cases. We can detect replies and forwards, by inspecting
the prefix on the subject line – whether it is “re:”, “fw:”, “fwd:” and so on.
Figure 4.17 shows the fraction of emails replied to in the training and validation
sets for known prefixes, an unknown prefix (other) or no prefix at all. The plot
shows that, indeed, users are more likely to reply to messages which are replies
or forwards and a SubjectPrefix feature might therefore be informative. What
this plot does not tell us is whether this new feature gives additional information
over the features we already have in our feature set. To check whether it does, we
need to evaluate the feature set with and without this new feature. Figure 4.18
gives the area under the ROC curve and the average precision for each user and
averaged, for our feature set with and without the SubjectPrefix feature.

What these results show is that the new feature sometimes increases accuracy
and sometimes reduces accuracy depending on the user (whichever metric you
look at). However, on average the accuracy is improved with the feature, which

208 CHAPTER 4. UNCLUTTERING YOUR INBOX

UserName AveragePrecision AreaUnderCurve

User35CB8E5 52.1% 91.0%

UserCE3FDB4 35.8% 89.1%

User6AACED 45.0% 91.4%

User7E601F9 53.5% 80.2%

User68251CD 61.4% 87.3%

User223AECA 50.9% 90.1%

UserFF0F29E 29.3% 86.2%

User25C0488 32.5% 83.1%

User811E39F 25.3% 81.9%

User10628A6 47.3% 87.6%

Average 43.3% 86.8%

(a) Initial results

UserName AveragePrecision AreaUnderCurve

User35CB8E5 54.8% 91.0%

UserCE3FDB4 34.4% 89.1%

User6AACED 46.4% 91.2%

User7E601F9 53.2% 79.9%

User68251CD 62.8% 87.3%

User223AECA 50.2% 89.8%

UserFF0F29E 30.9% 87.2%

User25C0488 31.2% 82.2%

User811E39F 26.4% 82.2%

User10628A6 48.6% 88.6%

Average 43.9% 86.9%

(b) With SubjectPrefix feature

Figure 4.18: Evaluation results for each user and overall, for the previous feature set and a feature set with
the new SubjectPrefix feature added. On average, both the area under the curve and the average precision are
slightly improved by adding the SubjectPrefix feature.

suggests that we should retain it in the feature set. Notice that the average
precision is a more sensitive metric than the area under the curve – so it is more
helpful when judging a feature’s usefulness. It is also worth bearing in mind
that either evaluation metric only gives an overall picture. Whilst headline
accuracy numbers like these are useful, it is important to always look at the
underlying predictions as well. To do this we can go back to the tool and
check that adding in this feature has reduced the number of false negatives
for reply/forward emails. Using the tool, we find that this is indeed the case,
but also that we are now slightly more likely to get false positives for the last
email of a conversation. This is because the only difference between the last
email of a conversation and the previous ones is the message content, which
we have limited access to through our feature set. Although incorrect, such
false positives can be quite acceptable to the user, since the user interface will
bring the conversation to the user’s attention, allowing them to decide whether
to continue the conversation or not. So we have removed some false negatives
that were quite jarring to the user at the cost of adding a smaller number of
false positives that are acceptable to the user. This is a good trade-off – and
also demonstrates the risk of paying too much attention to overall evaluation
metrics. Here, a small increase in the evaluation metric (or even no increase at
all for some users) corresponds to an improvement in user satisfaction.

The next kind of error we found were false negatives for emails received via
distribution lists. In these situations, a user is likely to reply to emails received

4.5. EVALUATING AND IMPROVING THE FEATURE SET 209

on certain distribution lists, but not on others. The challenge we face with this
kind of error is that emails often have multiple recipients and, if the user is not
explicitly named, it can be impossible to tell which recipients are distribution
lists and which of these distribution lists contain the user. For example, if an
email is sent to three different distribution lists and the user is on one of these,
it may not be possible to tell which one.

To get around this problem, we can add a Recipients feature that captures
all of the recipients of the email, on the grounds that one of them (at least) will
correspond to the user. Again, this is helping to conform to Assumption 7
since we will no longer be ignoring a relevant signal: the identities of the email
recipients. We can design this feature similarly to the Sender feature, except
that multiple buckets of the feature will have non-zero values at once, one for
each recipient. We have to be very careful when doing this to ensure that our new
Recipients feature matches the assumptions of our model. A key assumption is
the contribution of a single feature to the overall score is normally in the range
-1.0 to 1.0, since the weight for a bucket normally takes values in the range
and we have always used feature values of 1.0. But now if we have an email
with twenty recipients, then we have twenty buckets active – if each bucket has
a feature value of 1.0, then the Recipients feature would normally contribute
between -20.0 to 20.0 to the overall score. To put it another way, the influence of
the Recipients feature on the final prediction would be twenty times greater for
an email with twenty recipients than for an email with one recipient. Intuitively
this does not make sense since we really only care about the single recipient
that caused the user to receive the email. Practically this would lead to the
feature either dominating all the other features or being ignored depending on
the number of recipients – very undesirable behaviour in either case. To rectify
this situation, we can simply ensure that, no matter how many buckets of the
feature are active, the sum of their feature values is always 1.0. So for an email
with five recipients, five buckets are active, each with a feature value of 0.2.
This solution is not perfect since there is really only one recipient that we care
about and the signal from this recipient will be diluted by the presence of other
recipients. A better solution would be to add in a variable to the model to
identify the relevant recipient. To keep things simple, and to demonstrate the
kind of compromises that arise when designing a feature set with a fixed model,
we will keep the model the same and use a feature-based solution. As before,
we can evaluate our system with and without this new Recipients feature.

The comparative results in Figure 4.19 are more clear-cut than the previous
ones: in most cases the accuracy metrics increase with the Recipients feature
added. Even where a metric does not increase, it rarely decreases by very
much. On average, we are seeing a 0.2% increase in AUC and a 0.8% increase
in AP. These may seem like small increases in these metrics, but they are in
fact quite significant. Using the interactive tool tells us that a 1% increase in
average precision gives a very noticeable improvement in the perceived accuracy
of the system, especially if the change corrects particularly jarring incorrect
predictions. For example, suppose a user owns a particular distribution list
and replies to posts on the list frequently. Without the Recipients feature the

210 CHAPTER 4. UNCLUTTERING YOUR INBOX

UserName AveragePrecision AreaUnderCurve

User35CB8E5 54.8% 91.0%

UserCE3FDB4 34.4% 89.1%

User6AACED 46.4% 91.2%

User7E601F9 53.2% 79.9%

User68251CD 62.8% 87.3%

User223AECA 50.2% 89.8%

UserFF0F29E 30.9% 87.2%

User25C0488 31.2% 82.2%

User811E39F 26.4% 82.2%

User10628A6 48.6% 88.6%

Average 43.9% 86.9%

(a) Without Recipients feature

UserName AveragePrecision AreaUnderCurve

User35CB8E5 57.6% 91.7%

UserCE3FDB4 33.9% 89.0%

User6AACED 46.7% 91.1%

User7E601F9 54.5% 80.2%

User68251CD 63.8% 87.7%

User223AECA 51.5% 89.2%

UserFF0F29E 30.6% 87.2%

User25C0488 32.1% 83.3%

User811E39F 26.4% 82.3%

User10628A6 50.0% 88.9%

Average 44.7% 87.1%

(b) With Recipients feature

Figure 4.19: Evaluation results for the previous feature set without the Recipients feature and for a feature set
with the Recipients feature included.

system would likely make incorrect predictions on such emails which would be
quite jarring to the user, as the owner of the distribution list. Fixing this
problem by adding in the Recipients feature would substantially improve the
user’s experience despite leading to only a tiny improvement in the headline
AUC and AP accuracy numbers.

We are now free to go to the next problem on the list and modify the feature
set to try to address it. For example, addressing the issue of ‘graymail’ emails
would require a feature that looked at the content of the email – in fact a
word feature works well for this task. For the project with the Exchange team,
we continued to add to and refine the feature set, ensuring at each stage that
the evaluation metrics were improving and that mistakes on real emails were
being fixed, using the tool. Ultimately we reached the stage where the accuracy
metrics were very good and the qualitative accuracy was also good. At this
point you might think we were ready to deploy the system for some beta testers
– but in real machine learning systems things are never that easy. . .

Review of concepts introduced in this section

recall Another term for the true positive rate, often used when we are trying to
find rare positive items in a large data set. The recall is the proportion of these
items successfully found (‘recalled’) and is therefore equal to the true positive
rate.

4.5. EVALUATING AND IMPROVING THE FEATURE SET 211

precision The fraction of positive predictions that are correct. Precision is
generally complementary to recall in that higher precision means lower recall
and vice versa. Precision is often used as an evaluation metric in applications
where the focus is on the accuracy of positive predictions. For example, in a
search engine the focus is on the accuracy of the documents that are retrieved
as results and so a precision metric might be used to evaluate this accuracy.

This kind of precision should not be confused with the inverse variance of a
Gaussian which is also known as the precision. In practice, the two terms are
used in very different contexts so confusion between the two is rare.

precision-recall curve A plot of precision against recall for a machine learn-
ing system as some parameter of the system is varied (such as the threshold on a
predicted probability). Precision-recall curves are useful for assessing prediction
accuracy when the probability of a positive prediction is relatively low.

average precision The average precision across a range of recalls in the
precision-recall curve, used as a quantitative evaluation metric. This is effec-
tively the area under the P-R curve if the full range of recalls is used. However,
the very left hand end of the curve is often excluded from this average since
the precision measurements are inaccurate, due to being computed from a very
small number of data items.

212 CHAPTER 4. UNCLUTTERING YOUR INBOX

4.6 Learning as emails arrive

So far we’ve been able to train our model on a large number of emails at once.
But for our application we need to be able to learn from a new email as soon
as a user replies to it, or as soon as it becomes clear that the user is not going
to reply to it. We cannot wait until we have received a large number of emails,
then train on them once and use the trained model forever. Instead, we have to
keep training the model as new emails come in and always use the latest trained
model to make predictions.

As we saw in section 3.3 in the previous chapter, we can use online learning
to continually update our model as we receive new training data. In our model
online learning is straightforward: for each batch of emails that have arrived
since we last trained, we use the previous posterior distributions on weight and
threshold as the priors for training. Once training on the batch is complete, the
new posterior distributions over weight and threshold can be used for making
predictions. Later when the next batch of emails is trained on, these posterior
distributions will act as the new priors. We can check how well this procedure
works by dividing our training data into batches and running online learning
as each batch comes in. We can then evaluate this method in comparison to
offline training, where all the training data seen up to that point is presented
at once. Figure 4.20 shows the AUC and AP averaged across all 10 users using
either offline training or online training with different batch sizes.

of emails

0 100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 5 10 50 Offline

(a) Area Under Curve

of emails

0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 5 10 50 Offline

(b) Average Precision

Figure 4.20: Prediction accuracy as more and more training emails become
available, averaged over all 10 users. For each metric, the offline curve shows
the accuracy if we retrain the model from scratch on all emails received up to
that point. The four other curves show the accuracy if we instead do online
training to update the model incrementally after every 1, 5, 10 or 50 emails.

4.6. LEARNING AS EMAILS ARRIVE 213

These results show that online learning gives an accuracy similar to, but
slightly lower than offline training, with larger batch sizes giving generally better
accuracy. The plots also show that the difference in accuracy decreases as more
emails are received. So it seems like online learning could be a suitable solution,
once sufficient emails have been received. But this brings us to another problem:
it takes around 400 to 500 emails for the average precision to get close to a
stable value. For a time before that number is reached, and particularly when
relatively few emails have been trained on, the accuracy of the classifier is low.
This means that the experience for new users would be poor. Of course, we
could wait until the user has received and acted on sufficient emails, but for
some users this could take weeks or months. It would be much better if we
could give them a good experience straight away. The challenge of making good
predictions for new users where there is not yet any training data is known as
a cold start problem.

4.6.1 Modelling a community of users

We’ve already shown that we can solve certain prediction problems by changing
the feature set. But in this case, there is no change to the feature set that can
help us – we cannot even compute feature values until we have seen at least one
email! But since we have a classification model rather than a fixed classification
algorithm, we have an additional option available to us: to change the model.

Learning from many users will help us to make
better predictions for a new user.

How can we change our model to
solve the cold start problem? We can
exploit the fact that different users
tend to reply to the same kinds of
emails. For example, users tend to be
more likely to reply to emails where
they are first on the To line or where
the email is forwarded to them. This
suggests that we might expect the
learned weights to be similar across
users, at least for those feature buck-
ets that capture behaviours common
amongst users. However, there may also be other feature buckets which capture
differences in the behaviour from user to user, where we may expect the learned
weights to differ between users. To investigate which feature buckets are similar
across users, we can plot the learned weights for the first five of our users, for all
feature buckets that they have in common (that is, all buckets except those of
the Sender and Recipients features). The resulting plot is shown in Figure 4.21.

As you can see, for many feature buckets, the weights are similar for all
five users and even for buckets where there is more variability across users the
weights tend to be all positive or all negative. But in a few cases, such as the
FromMe feature, there is more variability from user to user. This variability
suggests that these features capture differences in behaviour between users, such
as whether a particular user sends emails to themselves as reminders. Overall

214 CHAPTER 4. UNCLUTTERING YOUR INBOX

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

SubjectPrefix[no prefix]

Weight

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 4.21: Learned Gaussian distributions for the weights for each feature
bucket for the first five users in our data set. For most feature buckets the
learned weights are similar across users, demonstrating that they reply to emails
with similar characteristics.

4.6. LEARNING AS EMAILS ARRIVE 215

it seems like there is enough similarity between users that we could exploit this
similarity to make predictions for a completely new user. To do this, we need to
make a new modelling assumption about how the weights vary across multiple
users:

8 Across many users the variability in the weight for a feature bucket can
be captured by a Gaussian distribution.

This assumptions says that we can represent how a weight varies across users
by an average weight (the mean of the Gaussian distribution) and a measure
of how much a typical user’s weight deviates from this average (the standard
deviation of the Gaussian distribution).

Let’s change our model to add in this assumption. Since we are now mod-
elling multiple users, we need to add a plate across users and put our entire
existing model inside it. The only variables outside of this new plate will be two
new variables per feature bucket: weightMean to capture the average weight
across users and weightPrecision to capture the precision (inverse variance)
across users. We then replace the Gaussian(0,1) factor inside the plate (that
we used to use as a prior) by a Gaussian factor connected to weightMean and
weightPrecision. The resulting factor graph is shown in Figure 4.22.

You’ll notice that we have used precision (inverse variance) rather than vari-
ance to capture the variability in weights across users. A high weightPrecision

for a bucket means that its weight tends to be very similar from user to user,
whilst a low weightPrecision means the bucket weight tends to vary a lot from
user to user. We choose to use precision because we are now trying to learn this
variability and it turns out to be much easier to do this using a precision rather
than a variance. This choice allows us to use a gamma distribution to repre-
sent the uncertainty in the weightPrecision variable, either when setting its
prior distribution or when inferring its posterior distribution. The gamma dis-
tribution is a distribution over continuous positive values (that is, values greater
than zero). We need to use a new distribution because precisions can only be
positive – we cannot use a Gaussian distribution since it allows negative values,
and we cannot use a beta distribution since it only allows values between zero
and one. The gamma distribution also has the advantage that it is the conjugate
distribution for the precision of a Gaussian (see Panel 3.3 and Bishop [2006]).

The gamma distribution has the following density function:

Gamma(x; k, θ) =
xk−1e−

x
θ

θk Γ(k)
(4.1)

where Γ() is the gamma function, used to ensure the area under the density func-
tion is 1.0. The gamma distribution has two parameters: the shape parameter k
and the scale parameter θ – example gamma distributions with different values
of these parameters are shown in Figure 4.23a. Confusingly, the gamma distri-
bution is sometimes parameterised by the shape and the inverse of the scale,
called the rate. Since both versions are common it is important to check which
is being used – in this book, we will always use shape and scale parameters.

216 CHAPTER 4. UNCLUTTERING YOUR INBOX

Since we have relatively few users, we will need to be careful in our choice of
gamma prior for weightPrecision since it will have a lot of influence on how the
model behaves. Usually we expect the precision to be higher than 1.0, since we
expect most weights to be similar across users. However, we also need to allow
the precision to be around 1.0 for those rarer weights that vary substantially
across users. Figure 4.23b shows a Gamma(4,0.5) distribution that meets both
of these requirements.

There is one more point to discuss about the model in Figure 4.22, before we
try it out. If you are very observant, you will notice that the threshold variable
has been fixed to zero. This is because we want to use our communal weightMean
and weightPrecision to learn about how the threshold varies across users as
well as how the weights vary. To do this, we can use a common trick which is
to fix the threshold to zero and create a new feature which is always on for all

buckets

usersemails

indices

featureIndices

featureValue

0

featureScore

score

noisyScore

10 (variance)

repliedTo

weightMean weightPrecision

weight

featureWeight

Gaussian(0,1) Gamma(4,0.5)

Gaussian

Subarray

×

+

Gaussian

>

Figure 4.22: Model for jointly classifying emails of multiple users. Our classifica-
tion model is duplicated for each user by placing it inside a users plate. We then
introduce two shared variables for each feature bucket: weightMean captures
the typical (average) weight for that bucket across users and weightPrecision

captures how much the weight tends to vary across users.

4.6. LEARNING AS EMAILS ARRIVE 217

emails – this is known as the bias. The idea is that changing the score by a fixed
value for all emails is equivalent to changing the threshold by the same value.
So we can use the bias feature to effectively set the threshold, whilst leaving the
actual threshold fixed at 0. Since feature weights have a Gaussian(0,1) prior
but the threshold has a Gaussian(0,10) prior, we need to set the value of this
new bias feature to be

√
10, in order to leave the model unchanged – if we have

a variable whose uncertainty is Gaussian(0,1) and we multiply it by
√

10, we
get a variable whose uncertainty is Gaussian(0,10), as required.

4.6.2 Solving the cold start problem

A hands-on solution to the cold start
problem

We can now train our communal model on the first
five users (the users whose weights were plotted in
Figure 4.21). Even though we have substantially
changed the model, we are still able to use expecta-
tion propagation to do inference tasks like training
or prediction. So we do not need to invent a new
algorithm to do joint training on multiple users –
we can just run the familiar EP algorithm on our
extended model.

Figure 4.24 shows the community weight distri-
butions learned: each bar shows the mean of the
posterior over weightMean and the error bars show
a standard deviation given by the mean value of
weightPrecision. Note the different use of error
bars – to show weightPrecision (the learned variability across users) rather
than the uncertainty in weightMean itself. If you compare the distributions
of Figure 4.24 with the individual weights of Figure 4.21, you can see how the

x

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Gamma(1.00, 1.00) Gamma(1.00, 2.00)

Gamma(2.00, 1.00) Gamma(4.00, 0.50)

Gamma(8.00, 0.25) Gamma(16.00, 0.25)

(a)

x

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.23: (a) Example gamma distributions for different values of the shape
and scale parameters. (b) The Gamma(4, 0.5) distribution which we use as a
prior for the precision of the weights.

218 CHAPTER 4. UNCLUTTERING YOUR INBOX

learned distributions have nicely captured the variability in weights across users.

FromMe

ToCcPosition[NotOnToOrCcLine]

ToCcPosition[FirstOnToLine]

ToCcPosition[SecondOnToLine]

ToCcPosition[ThirdOrLaterOnToLine]

ToCcPosition[FirstOnCcLine]

ToCcPosition[SecondOrLaterOnCcLine]

HasAttachments

BodyLength[0]

BodyLength[1-4]

BodyLength[5-8]

BodyLength[9-16]

BodyLength[17-32]

BodyLength[33-64]

BodyLength[65-128]

BodyLength[129-256]

BodyLength[257-512]

BodyLength[513-1023]

BodyLength[>1023]

SubjectLength[0]

SubjectLength[1-2]

SubjectLength[3-4]

SubjectLength[5-8]

SubjectLength[9-16]

SubjectLength[17-32]

SubjectLength[33-64]

SubjectLength[>64]

SubjectPrefix[no prefix]

SubjectPrefix[re]

SubjectPrefix[fw]

SubjectPrefix[Other]

Bias

Mean

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

Figure 4.24: Community weight distributions learned from the first five users
in our data set. The blue bar shows the expected value of weightMean and the
errors bars show one standard deviation either side of this corresponding to the
expected value of weightPrecision. Comparing to Figure 4.21 shows that the
learned weight distributions are consistent with the weights learned individually
for each user.

4.6. LEARNING AS EMAILS ARRIVE 219

To apply our learned community weight distributions for a new user, we can
use the same model configured for a single user with the priors over weightMean
and weightPrecision replaced by the Gaussian and gamma posteriors learned
from the first five users. We can use this model to make predictions even when
we have not seen any emails for the new user. But we can also use the model to
do online training, as we receive emails for a new user. As we do online training
using the community model, we can smoothly evolve from making generic pre-
dictions that may apply to any user to making personalised predictions specific
to the new user. This evolution happens entirely automatically through doing
inference in our model – there is no need for us to specify an ad-hoc procedure
for switching from community to personalised predictions.

Figure 4.25 shows the accuracy of predictions made using online training in
the community model compared to the individual model (using a batch size of
5) for varying amounts of training data. For this plot we again average across
all ten users – we make prediction results for the first five users using a separate
community model trained on the last five users. The results are very satisfactory
– the initial accuracy is high (an average AP of 41.8%) and then it continues
to rise smoothly until it reaches an average AP of 43.2% after 500 emails have
been trained on. As we might have hoped, our community model is making
good predictions from the start, which then become even better as the model
personalizes to the individual user. The cold start problem is solved!

In the production system used by Exchange, we had a much larger num-
ber of users to learn community weights from. In this case, the posteriors over
weightMean and weightPrecision became very narrow. When these poste-
riors are used as priors, the values of weightMean and weightPrecision are
effectively fixed. This allows us to make a helpful simplification to our system:
once we have used the multi-user model to learn community weight distribu-
tions, we can go back to the single user model to do online training and make
predictions. All we need to do is replace the Gaussian(0,1) prior in the single
user model with a Gaussian prior whose mean and precision are given by the
expected values of the narrow weightMean and weightPrecision distributions.
So, in production, the multi-user model is trained once offline on a large number
of users and the learned community weight distributions are then used to do
training and prediction separately for each user. This separation makes it easier
to deploy, manage and debug the behaviour of the system since each user can
be considered separately.

There is one final thing to do before we deploy our system to some beta
testers. Remember the test sets of email data that we put to one side at the
start of the chapter? Now is the time to break them out and see if we get
results on the test sets that are comparable to the results we have seen on our
validation sets. Comparative results for the validation and test sets are shown
in Table 4.5.

220 CHAPTER 4. UNCLUTTERING YOUR INBOX

of emails

0 100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Online Community-Online

(a) Area Under Curve

of emails

0 100 200 300 400 500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Online Community-Online

(b) Average Precision

Figure 4.25: Prediction accuracy against amount of training data using individual models or the community
model. In both cases training is done online with batches of 5 emails. Results are averaged over all 10 users –
for the first five users prediction uses a community model trained on the second five users, and vice versa for the
second five users.

UserName
AveragePrecisio

nValida�on

AveragePrecisio

nTest

AreaUnderCurv

eValida�on

AreaUnderCurv

eTest

Valida�onReply

Count
TestReplyCount

User35CB8E5 57.6% 90.6% 91.7% 92.3% 74 10

UserCE3FDB4 33.9% 38.5% 89.0% 88.2% 64 21

User6AACED 46.7% 46.0% 91.1% 91.7% 58 16

User7E601F9 54.5% 54.2% 80.2% 84.3% 119 36

User68251CD 63.8% 78.8% 87.7% 89.3% 142 62

User223AECA 51.5% 24.3% 89.2% 82.6% 51 12

UserFF0F29E 30.6% 24.3% 87.2% 85.5% 119 40

User25C0488 32.1% 39.4% 83.3% 86.1% 114 44

User811E39F 26.4% 36.9% 82.3% 82.6% 129 64

User10628A6 50.0% 55.5% 88.9% 90.3% 61 24

Average 44.7% 48.9% 87.1% 87.3% 93.1 32.9

Table 4.5: Final accuracy results for the validation and test sets for each user and overall. The right-hand
columns show the number of replied to emails in each data set, which gives an indication of the reliability of the
corresponding average precision metric.

4.6. LEARNING AS EMAILS ARRIVE 221

The table shows that the AUC measurements for the users’ test sets are
generally quite similar to those of the validation sets, with no obvious bias
favouring one or the other. This suggests that in designing our model and
feature set we have not overfit to the validation data. The AP measurements
are more different, particularly for some users – this is because the test sets are
quite small and some contain only a few replied-to emails. In such situations,
AP measurements become quite noisy and unreliable. However, even if we
focus on those users with more replied to emails, it does not appear that the
test AP is consistently lower than the validation AP. So both evaluation metrics
suggest that there is no fundamental difference between test and validation set
accuracies and so we should expect to achieve similar prediction accuracy for
real users.

4.6.3 Final testing and changes

At this point, the prediction system was deployed to beta testers for further real-
world testing. Questionnaires were used to get feedback on how well the system
was working for users. This testing and feedback highlighted two additional
issues:

• The predictions appeared to get less accurate over time, as the user’s
behaviour evolved, for example, when they changed projects or changed
teams the clutter predictions did not seem to change quickly enough to
match the updated behaviour.

• The calibration of the system, although correct on average, was incorrect
for individual users. The predicted probabilities were too high for some
users and too low for others.

Investigation of the first issue identified a similar problem to the one we
diagnosed in chapter 3. We have assumed that the weights in the model are
fixed across time for a particular user. This assumption does not allow for
user behaviour to change. The solution was to change the model to allow the
weights to change over time, just as we allowed the skills to change over time in
the TrueSkill system. The modified model has random variables for each bucket
weight for each period of time, such as a variable per week. Figure 4.26a shows
an example model segment that contains weights for two consecutive weeks
weight(1) and weight(2). To allow the weights to change over time, the weight
for the second week is allowed to vary slightly from the weight for the first week,
through adding Gaussian noise with very low variance. As with the TrueSkill
system, this change allows the system to track slowly-changing user behaviours.

The second issue was harder to diagnose. Investigation of the issue found
that the too-high predicted probabilities occurred for users that had a low vol-
ume of clutter and the too-low predicted probabilities occurred for users that
had a high volume of clutter. It turned out that the problem was the noisy
ground truth labels that we encountered in section 4.5 – for users with a high

222 CHAPTER 4. UNCLUTTERING YOUR INBOX

buckets

weight₍₁₎ weight₍₂₎

Gaussian(0,1)

Gaussian(·,0.01)

(a)
emails

repliedTo

noisyScore

intendedToReply

threshold

>

AddNoise

(b)

Figure 4.26: Modifications to the model to fix issues found by beta testers
(a) Allowing the weights to change over time addresses the issue that action
predictions do not evolve as user behaviour changes (b) Explicitly modelling
the difference between the intended action label and the actual action label
addresses poor calibration that occurs when the intended and actual labels do
not match.

volume of clutter, a lot of clutter items were incorrectly labelled as not clut-
ter and vice versa for users with a low volume of clutter. Training with these
incorrect labels introduced a corresponding bias into the predicted probability
of clutter. The solution here is to change the model to represent label noise
explicitly. For example, for reply prediction, we can create a new variable in the
model intendedToReply representing the true label of whether the user truly
intended to reply to the message. We then define the observed label repliedTo
to be a noisy version of this variable, using a factor like the AddNoise factor
that we used back in chapter 2. Figure 4.26a shows the relevant piece of a mod-
ified model with this change in place. Following this change, the calibration was
found to be much closer to ideal across all users and the systematic calibration
variation for users with high or low clutter volume disappeared.

In addressing each of these issues we needed to make changes to the model,
something that would be impossible with a black box classification algorithm,
but which is central to the model-based machine learning approach. With these
model changes in place, the Clutter prediction system is now deployed as part of
Office365, helping to remove clutter emails from peoples’ inboxes. Figure 4.27
shows a screenshot of the system in action, all using model-based machine learn-
ing!

Review of concepts introduced in this section

cold start problem The problem of making good predictions for a new
entity (for example, a new user) when there is very little (or no) training data

4.6. LEARNING AS EMAILS ARRIVE 223

Figure 4.27: The clutter system in action in Office 365.

available that is specific to that entity. In general, a cold start problem can
occur in any system where new entities are being introduced – for example, in
a recommendation system, a cold start problem occurs when trying to predict
whether someone will like a newly released movie that has not yet received any
ratings.

gamma distribution A probability distribution over a positive continuous
random variable whose probability density function is

Gamma(x; k, θ) =
xk−1e−

x
θ

θk Γ(k)
(4.2)

where Γ() is the gamma function, used to ensure the area under the density
function is 1.0. The gamma distribution has two parameters shape parameter
k and the scale parameter θ.

bias A feature which is always on for all data items. Since the bias feature is
always on, its weight encodes the prior probability of the label. For example,
the bias weight might encode probability that a user will reply to an email,
before we look at any characteristics of that particular email. Equivalently, use
of a bias features allows the threshold variable to be fixed to zero, since it is
no longer required to represent the prior label probability.

224 CHAPTER 4. UNCLUTTERING YOUR INBOX

Chapter 5

Making Recommendations

Whether you’re into music, books, films or video games, a good
recommendation can be a real joy – and can help less well known
works get into the spotlight. But what one person considers a new
classic, another will write off as a dud. Can a model be used to
understand what someone likes and dislikes well enough to provide
tailored recommendations?

Retailers of all kinds are keen to make accurate, personalized recommenda-
tions to their customers. But developing an automatic recommendation system
requires expertise and investment beyond the means of many retailers, espe-
cially smaller ones. Instead, such retailers can turn to the cloud and make use
of online recommendation services.

In Microsoft, the Azure Machine Learning team wanted to make it easy for
developers and data scientists to embed predictive analytics and machine learn-
ing into their applications. The team’s solution was a cloud-based platform
for building and exploring analytics pipelines, constructed from a number of
machine learning building blocks (Figure 5.1). Crucially, the platform also lets
these pipelines be deployed as web services which can then be accessed from
within an application. With high demand for automated recommendation, the
Azure ML team wanted to have building blocks for making recommender sys-
tems, flexible enough to meet the needs of different customers.

225

https://azure.microsoft.com/en-us/services/machine-learning/

226 CHAPTER 5. MAKING RECOMMENDATIONS

Figure 5.1: The goal: make it possible to construct customized recommendation
services in Azure Machine Learning.

Potential customers had varying requirements that a recommender system
needed to fulfill. Some wanted to make recommendations based solely on other
items that a user has liked or disliked. Some had extra information about each
item (such as the genre of a movie) that they wanted the system to take into
account. Similarly, some had additional data about their users (such as age or
gender) that they wanted to use to improve recommendations. Furthermore,
while some user feedback came in the form of star ratings, other feedback sys-
tems only allowed users to like or dislike items. In addition, the items being
recommended varied from traditional retail products like books and films, to
restaurants and online services.

We needed to construct a model that could meet all of these requirements.
In this chapter, we’ll show how to develop such a flexible model and how to
use it to make personalised recommendations. As an example, we will be using
movies as the items to make recommendations for, since these have been very
well explored and there are freely available data sets of movie ratings. We will
start with an initial model that can predict like or dislike and then extend it to
meet the additional customer requirements mentioned above. The model that
we will develop in this chapter is closely based on the Matchbox model of Stern
et al. [2009].

5.1. LEARNING ABOUT PEOPLE AND MOVIES 227

5.1 Learning about people and movies

The goal of this chapter is to make personalized movie recommendations to
particular people. One way to think about this problem is to imagine a table
where the rows are movies and the columns are people. The cells of the table
show whether the person likes or dislikes the movie – for example, as shown in
Table 5.1. This table is an illustration of the kind of data we might have to
train a recommender system, where we have asked a number of people to say
whether they like or dislike particular movies.

Movie

The Lion King

Lethal Weapon

The Sound of Music

Amadeus

When Harry Met Sally

Table 5.1: A table showing the kind of data used to train a recommender system.
Each row is a movie and each column is a person. Filled cells show where a
person has said that they liked or disliked a movie. Empty cells show where
we do not have any information about whether the person liked the movie, and
so are where we could make a like/dislike prediction. Making such a prediction
for every empty cell in a person’s column would allow us to make a movie
recommendation for that person – for example, by recommending the movie
with the highest probability that the person would like it.

The empty cells in Table 5.1 show where we do not know whether the person
likes the movie or not. There are bound to be such empty cells – we cannot ask
every person about every movie and, even if we did, there will be movies that a
person has not seen. The goal of our recommender system can be thought of as
filling in these empty cells. In other words, given a person and a movie, predict
whether they will like or dislike that movie. So how can we go about making
such a prediction?

5.1.1 Characterizing movies

Let’s start by considering how to characterize a movie. Intuitively, we can
assume that each movie has some traits, such as whether it is an escapist or

228 CHAPTER 5. MAKING RECOMMENDATIONS

realistic, action or emotional, funny or serious. If we consider a particular trait
as a line, we can imagine placing movies on that line, like this:

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Figure 5.2: Movies placed on a line representing how much each movie is an
emotional movie or as an action movie (or neither).

Movies towards the left of the line are emotional movies, like romantic come-
dies. Movies towards the right of the line are action movies. Movies near the
middle of the line are neutral – neither action movies nor emotional movies.
Notice that, in defining this trait, we have made the assumption that action
and emotional are opposites.

Now let’s consider people. A particular person might like emotional movies
and dislike action movies. We could place that person towards the left of the
line (Figure 5.3). We would expect such a person to like movies on the left-hand
end of the line and dislike movies on the right-hand end of the line.

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Figure 5.3: A person placed on the left of the line would be expected to like
emotional movies and dislike action movies.

Another person may have the opposite tastes: disliking emotional movies
and loving action movies. We can place this person towards the right of the line
(Figure 5.4). We would expect such a person to dislike movies on the left-hand
end of the line and like movies on the right-hand end of the line.

5.1. LEARNING ABOUT PEOPLE AND MOVIES 229

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Figure 5.4: A person placed on the right of the line would be expected to like
action movies and dislike emotional movies.

It is also perfectly possible a person to like (or dislike) both action and
emotional movies. We could consider such a person to be neutral to the ac-
tion/emotion trait and place them in the middle of the line (Figure 5.5). We
would expect that such a person might like or dislike movies anywhere on the
line.

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Figure 5.5: A person placed in the middle of the line, would be expected to not
care whether a movie was an action movie or an emotional one.

We’d like to use an approach like this to make personalized recommenda-
tions. The problem is that we do not know where the movies lie on the line
or where the people lie on the line. Luckily, we can use model-based machine
learning to infer both of these using an appropriate model.

5.1.2 A model of a trait

Let’s build a model for the action/emotion trait we just described. First, let’s
state some assumptions that follow from the description above:

230 CHAPTER 5. MAKING RECOMMENDATIONS

1 Each movie can be characterized by its position on the trait line, repre-
sented as a continuous number.

2 A person’s preferences can be characterized by a position on the trait line,
again represented as a continuous number.

In our model, we will use a trait variable to represent the position of each
movie on the trait line. Because it is duplicated across movies, this variable will
need to lie inside a movies plate. We also need a variable for the position of the
person on the line, which we will call preference since it encodes the person’s
preferences with respect to the trait. To make predictions, we need a variable
showing how much the person is expected to like each movie. We will call this
the affinity variable and assume that a positive value of this variable means
that we expect the person to like the movie and a negative value means that we
expect the person to dislike the movie.

We need a way to combine the trait and the preference to give the be-
haviour described in the previous section. That is, a person with a negative
(left-hand end) preference should prefer movies with negative (left-hand end)
trait values. A person with a positive (right-hand end) preference should
prefer movies with positive (right-hand end) trait values. Finally, a neutral
person with a preference near zero should not favour any movies, whatever
their trait values. This behaviour can be summarised as an assumption:

3 A positive preference value means that a person prefers movies with pos-
itive values of the trait (and vice versa for negative values). The absolute
size of the preference value indicates the strength of preference, where zero
means indifference.

This behaviour assumption can be encoded in our model by defining affinity

to be the product of the trait and the preference. So we can connect these
variables using a product factor, giving the factor graph of Figure 5.6.

movies

preferencetrait

affinity

Gaussian(0,1)Gaussian(0,1)

×

Figure 5.6: Factor graph for a single trait. Each movie has a trait value which
is multiplied by the person’s preference to give their affinity for that movie.
More positive affinity values mean that the person is more likely to like the
movie.

5.1. LEARNING ABOUT PEOPLE AND MOVIES 231

If you have a very good memory, you might notice that this factor graph
is nearly identical to the one for a one-feature classifier (Figure 4.1) from the
previous chapter. The only difference is that we have an unobserved trait

variable where before we had an observed featureValue. As we construct our
recommendation model, you will see that it is similar in many ways to the
classification model from chapter 4.

Given this factor graph, we want to infer both the movies’ trait values and
the person’s preference from data about the person’s movie likes and dislikes.
To do any kind of learning we need to have some variable in the model that
we can observe – more specifically, we need a binary variable that can take one
of two values (like or dislike). Right now we only have a continuous affinity

variable rather than a binary one. Sounds familiar? Yes! We encountered
exactly this problem back in section 4.2 of the previous chapter, where we
wanted to convert a continuous score into a binary reply prediction. Our solution
then was to add Gaussian noise and then threshold the result to give a binary
variable. We can use exactly the same solution here by making a noisy version of
the affinity (called noisyAffinity) and then thresholding this to give a binary
likesMovie variable. The end result is the factor graph of Figure 5.7 (which
closely resembles Figure 4.4 from the last chapter).

movies

likesMovie

preferencetrait

affinity

noisyAffinity

Gaussian(0,1)Gaussian(0,1)

×

Gaussian(·,1)

>0

Figure 5.7: Extended factor graph that converts the continuous affinity into
a binary likesMovie variable, which can be observed to train the model.

We could start using this model with one trait and one person, but that
wouldn’t get us very far – we would only learn about the movies that the person
has already rated and so would only be able to recommend movies that they

232 CHAPTER 5. MAKING RECOMMENDATIONS

have already seen. In the next section, we will extend our model to handle
multiple traits and multiple people so that we can characterise movies more
accurately and use information from many peoples’ ratings pooled together, to
provide better recommendations for everyone.

5.2. MULTIPLE TRAITS AND MULTIPLE PEOPLE 233

5.2 Multiple traits and multiple people

Our model with just one trait is not going to allow us to characterize movies
very well. To see this, take another look at Figure 5.4:

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

When Harry
Met Sally

Amadeus

Using just the action/emotion trait, we can hardly distinguish between The
Lion King and Amadeus since these have very similar positions on this trait
line. So for the woman in this figure, we would not be able to recommend films
like Amadeus (which she likes) without also recommending films like The Lion
King (which she doesn’t like).

We can address this problem by using additional traits. If we include a
second trait representing how escapist or realist the film is, then each movie
will now have a position on this second trait line as well as on the original
trait line. This second trait value allows us to distinguish between these two
movies. To see this, we can show the movies on a two-dimensional plot where
the escapist/realist trait position is on the vertical axis, as shown in Figure 5.8.

234 CHAPTER 5. MAKING RECOMMENDATIONS

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

Figure 5.8: Two-dimensional plot where the new vertical axis shows how escapist
or realist a movie is. Dotted lines show that the horizontal position of the movies
has not changed.

In Figure 5.8, the more escapist movies have moved above the emotion/action
line and the more realist movies have moved below. The left/right position of
these movies has not changed from before (as shown by the dotted lines). This
two-dimensional space allows Amadeus to be move far away from the The Lion
King which means that the two movies can now be distinguished from each
other.

Given this two dimensional plot, we can indicate each person’s preference for
more escapist or realist movies by positioning them appropriately above or below
the emotion/action line, as shown in Figure 5.9. Looking at this figure, you can
see that the woman from Figure 5.4 has now moved below the emotion/action
line, since she has a preference for more realistic movies. Her preference point
is now much closer to Amadeus than to The Lion King – which means it is now
possible for our system to recommend Amadeus without also recommending
The Lion King.

5.2. MULTIPLE TRAITS AND MULTIPLE PEOPLE 235

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

Figure 5.9: Placing people on the two-dimension plot allows us to capture their
preferences for escapist/realist movies, whilst still representing their preferences
for emotional/action movies.

We have now placed movies and people in a two-dimensional space, which
we will call trait space. If we have three traits then trait space will be 3-
dimensional, and so on for higher numbers of traits. We can use the concept of
trait space to update our first two assumptions to allow for multiple traits:

1 Each movie can be characterized by its position on the trait line in trait
space, represented as a continuous number for each trait.

2 A person’s preferences can be characterized by a position on the trait line
in trait space, again represented as a continuous number for each trait.

Assumption 3 does not need to be changed since we are combining each
trait and preference exactly as we did when there was just one trait. How-
ever, we do need to make an additional assumption about how a person’s pref-
erences for different traits combine together to make an overall affinity.

4 The effect of one trait value on whether a person likes or dislikes a movie
is the same, no matter what other trait values that movie has.

236 CHAPTER 5. MAKING RECOMMENDATIONS

We can encode this assumption in our model by computing a separate affinity
for each trait (which we will call the traitAffinity) and then just add them
together to give an overall affinity. Figure 5.10 gives the factor graph for this
model with a new plate over traits that contains the trait value for each movie,
the preference for each person and the traitAffinity, indicating that all of
these variables are duplicated per trait.

traits

movies

likesMovie

preferencetrait

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

×

+

Gaussian(·,1)

>0

Figure 5.10: Factor graph for combining together multiple traits.

This model combines together traits in exactly the same way that we com-
bined together features in the previous chapter. Once again, it leads to a very
similar factor graph – to see this, compare Figure 5.10 to Figure 4.5. The main
difference again is that we now have an unobserved trait variable where before
we had an observed featureValue. This may seem like a small difference, but
the implications of having this variable unobserved are huge. Rather than using
features which are hand-designed and provide given values for each item, we are
now asking our model to learn the traits and the trait values for itself! Think
about this for a moment – we are effectively asking our system to create its own
feature set and assign values for those features to each movie – all by just using
movie ratings! The fact that this is even possible may seem like magic – but it
arises from having a clearly defined model combined with a powerful inference
algorithm.

5.2. MULTIPLE TRAITS AND MULTIPLE PEOPLE 237

One new complexity arises in this model around the choice of the prior vari-
ance σ2 for the trait and preference variables. Because we are now adding
together several trait affinities, we risk changing the range of values that the
affinity can take as we vary the number of traits. To keep this range approx-
imately fixed, we set σ2 = 1/

√
T where T is the number of traits. The intuition

behind this choice of variance is that we would then expect the trait affinity to
have a variance of approximately 1/

√
T × 1/

√
T = 1/T . The sum of T of these

would have variance of approximately 1, which is the same as the single trait
model.

5.2.1 Learning from many people at once

If we try to use this model to infer traits and preferences given data for just one
person, we will only be able to learn about movies which that person has rated
– probably not very many. We can do much better if we pool together the data
from many people, since this is likely to give a lot of data for popular movies
and at least a little data for the vast majority of movies. This approach is
called collaborative filtering – a term coined by the developers of Tapestry,
the first ever recommender system. In Tapestry, collaborative filtering was
proposed for handling email documents, where “people collaborate to help one
another perform filtering by recording their reactions to documents they read”
[Goldberg et al., 1992]. In our application we want to filter movies by recording
the ratings (that is, reactions) that other people have to the movies they watch
– a different application, but the underlying principle is the same.

To extend our factor graph to handle multiple people, we add a new plate
over people and put all variables inside it except the trait variable, (which
is shared across people). The resulting factor graph is shown in Figure 5.11.
Looking at this factor graph, you can see that it is symmetric between people
and movies. In other words, we could swap over people and movies and we
would end up with exactly the same model!

238 CHAPTER 5. MAKING RECOMMENDATIONS

traits

peoplemovies

likesMovie

preferencetrait

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

×

+

Gaussian(·,1)

>0

Figure 5.11: Factor graph for a recommender model which can learn from
like/dislike data pooled across many people.

In this model we have chosen to threshold the noisyAffinity at zero,
roughly corresponding to the assumption that half the ratings will be ‘like’
and half will be ‘dislike’. This is quite a strong assumption to be making, so
we could instead learn this threshold value as we did for the classifier model.
Instead we will do something better – we will make a change that effectively
allows different thresholds to be learned for each movie and for each person. We
will add a bias variable per movie and a bias variable per user and include these
two variables in the sum when we compute the total affinity. We can actually
achieve this without changing the factor graph from the one in Figure 5.11 – all
we do is use a traits plate that is two bigger than the desired number of traits
and fix the first preference value and the second trait value to be exactly
1.0. If we use the model in this way, the first trait value will be the bias for a
movie and the second preference value will be the bias for a person. Introduc-
ing biases in this way allows the model to capture the general popularity of a
movie and the degree to which each person likes movies in general. We use this
trick to include biases is all models in this chapter, but they will not be shown
explicitly in the factor graphs, to keep them uncluttered.

Our final assumption is that we do not need any more variables in our model

5.2. MULTIPLE TRAITS AND MULTIPLE PEOPLE 239

– or to put it another way:

5 Whether a person will like or dislike a movie depends only on the movie’s
traits and not on anything else.

We will assess the validity of this assumption shortly, but first let’s put all of our
assumptions together in one place so that we can review them all (Table 5.2).

1 Each movie can be characterized by its position in trait space, repre-
sented as a continuous number for each trait.

2 A person’s preferences can be characterized by a position in trait
space, again represented as a continuous number for each trait.

3 A positive preference value means that a person prefers movies with
positive values of the trait (and vice versa for negative values). The
absolute size of the preference value indicates the strength of prefer-
ence, where zero means indifference.

4 The effect of one trait value on whether a person likes or dislikes a
movie is the same, no matter what other trait values that movie has.

5 Whether a person will like or dislike a movie depends only on the
movie’s traits and not on anything else.

Table 5.2: The assumptions encoded in our recommender model.

Assumption 1 seems reasonable since we can theoretically make trait space
as large as we like, in order to completely characterize any movie – for smaller
numbers of traits this assumption will hold less well, but still hopefully be
a good enough assumption for practical purposes. Assumption 2 assumes
that a person’s tastes can be well represented by a single point in trait space.
Quite possibly, people could occupy multiple points in trait space, for example
a person may like both children’s cartoons and very violent movies, but nothing
in between. However, it may be reasonable to assume that such people are rare
and so a person occupying a single point is a decent assumption in most cases.

Assumption 3 and Assumption 4 relate to how movie and person traits
combine together to give an affinity. Perhaps the most questionable assumption
here is Assumption 4 which says that the effect of each trait does not depend on
the other traits. In practice, we might expect some traits to override others or to
combine in unusual ways. For example, if someone only likes action movies that
star Arnold Schwarzenegger, but dislikes all the other kinds of movies that he
appears in – then this would be poorly modelled by these assumptions because
the ‘stars Arnold Schwarzenegger’ trait would have a positive effect in some
cases and a negative effect in others.

240 CHAPTER 5. MAKING RECOMMENDATIONS

A person may only like some
movies at particular times of year

Finally, we have Assumption 5 which says that
whether someone likes or dislikes a movie will depend
only on the movie’s traits – in fact it may depend on
many other things. For example, the time of year may
be a factor – someone may love Christmas movies in
December but loathe them in January. Another factor
could be the other people that are watching the movie
– whether someone enjoys a movie could well depend
on who is watching it with them. Following this line of
thought, we could imagine a recommendation system
that recommends movies for groups of people – this
has in fact been explored by, for example, Zhang et al.
[2015]. Other things that could influence a person’s enjoyment could include:
the time of day or time of week, their emotional state (do they want a happy
movie or a sad one? do they want to be distracted from real life or challenged?)
and so on. In short, there is plenty to question about Assumption 5 – but it’s
fine to stick with it for now and then consider extending the model to capture
additional cues later on.

So let’s keep the model as it is and use it to make some recommendations!

Review of concepts introduced in this section

trait space A multi-dimensional space where each point in the space cor-
responds to an item with a particular set of trait values. Nearby points will
correspond to items with similar traits, whereas points that are further apart
represent items with less in common. A trait space is useful for identifying
similar items and also for making item recommendations. See Figure 5.9 for a
visualisation of a two-dimensional trait space.

collaborative filtering A means of filtering items for one user of a system
based on the implicit or explicit rating of items by other users of that system.
For example, filtering emails based on others’ responses to the same emails or
recommending movies based on others’ ratings of those movies.

5.3. TRAINING OUR RECOMMENDER 241

5.3 Training our recommender

Before we can train our model, we need some data to train it on. The good
news here is that there are some high quality public data sets which can be used
for training recommender models. We will use a data set from the excellent
MovieLens site by GroupLens Research at the University of Minnesota. The
particular data set we will use has been made freely available for education and
development purposes - thank you MovieLens!

5.3.1 Getting to know our data

As with any new data set, our first task is to get to know the data. First of all,
here is a sample of 10 ratings from the data set:

User Movie Ra�ng

1 Willow (1988) 2

1 Antz (1998) 2

1 Fly, The (1986) 2.5

1 Time Bandits (1981) 1

1 Blazing Saddles (1974) 3

2 GoldenEye (1995) 4

2 Sense and Sensibility (1995) 5

2 Clueless (1995) 5

2 Seven (a.k.a. Se7en) (1995) 4

2 Usual Suspects, The (1995) 4

Table 5.3: A sample of ratings from the MovieLens data set.

The sample shows that each rating gives the ID of the person providing the
rating, the movie being rated, and the number of stars that the person gave
the movie. In addition to ratings, the data set also contains some information
about each movie – we’ll look at this later on, in section 5.6.

It’s a good idea to view a new data set in many different ways, to get a
deeper understanding of the data and to identify any possible data issues as
early as possible. As an example, let’s make a plot to understand what kind of
ratings people are giving. The above sample suggests that ratings go up to 5
stars and that half stars are allowed. To confirm this and to understand how
frequently each rating is given, we can plot a histogram of all the ratings in the
data set.

https://grouplens.org/datasets/movielens/

242 CHAPTER 5. MAKING RECOMMENDATIONS

Number of stars

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5000

10000

15000

20000

25000

30000

Figure 5.12: The number of ratings given for each possible number of stars
(from half a star up to five stars).

We can learn a few things about the ratings from Figure 5.12. The first
is that whole star ratings are given more than nearby ratings with half stars.
Secondly, the plot is biased to the right, showing that people are much more
likely to give a rating above three stars than below. This could perhaps be
because people are generous to the movies and try to give them decent ratings.
Another possibility is that people only rate movies that they watch and they
only watch movies that they expect to like. For example, someone might hate
horrors movies and so would never watch them, and so never rate them. If they
were forced to watch the movie, they would likely give it a very low rating. Since
people are not usually forced to watch movies, such ratings would not appear
in the data set, leading to the kind of rightward bias shown in Figure 5.12.

5.3.2 Training on MovieLens data

The model we have developed allows for two possible ratings: ‘like’ or ‘dislike’.
If we want to use the MovieLens data set with this model, we need a way to
convert each star rating into a like or a dislike. Guided by Figure 5.12, we will
assume that 3 or more stars means that a person liked the movie, and that 2.5
or fewer stars means they did not like the movie. Applying the transformation
gives us a new data set of like/dislike ratings.

We need to split this like/dislike data into a training set for training our
model, and a validation set to evaluate recommendations coming from the
model. For each person we will use 70% of their likes/dislikes to train on and
leave 30% to use for validation. We also remove ratings from the validation set
for any movies that do not appear anywhere in the training set (since the trait
position for these movies cannot be learned). The result of this process is:

• a training set of 69,983 ratings (57,383 likes/12,600 dislikes) covering 8,032
movies,

• a validation set of 28,831 ratings (23,952 likes/4,879 dislikes) covering
4,761 movies.

5.3. TRAINING OUR RECOMMENDER 243

Both data sets contain ratings from 671 different people.

To train the model, we attach the training set data to the likesMovie

variable and once again use expectation propagation to infer the trait values
for each movie and the preference values for each person. However, when we
try to do this, the posterior distributions for these variables remain broad and
centered at zero. What is going on here?

Symmetries can cause inference
problems

To understand the cause of this problem, let’s look
again at the picture of trait space from Figure 5.9,
which we’ve repeated in Figure 5.13a. The choice of
having emotion on the left and action on the right was
completely arbitrary. We could flip these over so that
action is on the left and emotion is on the right, whilst
also flipping the positions of all the people and movies
correspondingly, as shown in Figure 5.13b. The re-
sult is a flipped trait space that gives exactly the same
predictions. We could also swap the action/emotion
trait with the escapist/realist trait, as shown in Fig-
ure 5.13c. Again the result would give exactly the same
predictions. Notice that Figure 5.13c is also the same
as Figure 5.13b rotated by 90-degrees to the left. We
can also apply other rotations so that the axes of the
plot no longer lined up with our original traits (Fig-
ure 5.13d) and we still get the same predictions! When a model’s variables
can be systematically transformed without changing the resulting predictions,
the model is said to contain symmetries. During inference, these symmetries
cause the posterior distributions to get very broad, as they try to capture all
rotations and flips of trait space simultaneously. Not helpful!

244 CHAPTER 5. MAKING RECOMMENDATIONS

The
Lion King

ActionEmotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

The
Lion King

Action Emotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

Escapist

Realist

The
Lion King

Action

Emotion

Lethal
Weapon

The Sound
of Music

Amadeus

When Harry
Met Sally

EscapistRealist Trait 1

Trait 2

(a) (b)

(c) (d)

Figure 5.13: Examples of symmetries in our recommender model. (a) Origi-
nal trait space (b) A left-right flip symmetry (c) A flip symmetry caused by
swapping the axes (d) A rotational symmetry.

To solve this inference problem, we need to do some kind of symmetry
breaking. Symmetry breaking is any modification to the model or inference
algorithm with the aim of removing symmetries from the posterior distributions
of interest. For a two-trait version of our model, we can break symmetry by
fixing the position of two points in trait space – for example, fixing the positions
of the first two movies in the training set. We choose to fix the first movie to
(1,0) and the second to (0,1). These two points mean that rotations and flips
of the trait space now lead to different results, since these two movies cannot
be rotated/flipped correspondingly – and so we have removed the symmetries
from our model.

With symmetry breaking in place, EP now converges to a meaningful result.
However, the EP message passing algorithm runs extremely slowly due to the
high cost of computing messages relating to the product (×) factor. In Stern
et al. [2009] a variation of the EP message calculation is used for these messages,
as shown in equation (6) in the paper), which has the effect of speeding up the

https://www.microsoft.com/en-us/research/wp-content/uploads/2009/01/www09.pdf

5.3. TRAINING OUR RECOMMENDER 245

message calculation dramatically.
This faster inference algorithm gives posteriors over the position in trait

space for each movie and each person. In many cases, these posteriors are
quite broad because there were not enough ratings to place the movie or person
accurately in trait space. In Figure 5.14, we plot the inferred positions of those
movies where the posterior was narrow enough to locate the movie reasonably
precisely. Specifically, we plot a point at the posterior mean for each movie
where the posterior variance is less than 0.2 in each dimension – this means
that points are plotted for only 158 of our 8,032 movies. The learned positions
of people in trait space are distributed in broadly similar fashion to the positions
of movies, and so we will not show a plot of their positions.

This plot shows that our model has been able to learn two traits and assign
values for these traits to some movies, entirely using ratings – a pretty incredible
achievement! We can see that the learned trait values have some reassuring
characteristics – for example, movies in the same series have been placed near
each other (such as the two Lord of the Rings movies or the two Ace Venture
movies). This alone is pretty incredible – our system had no idea that these
movies were from the same series, since it was not given the names of the movies.
Just using the like/dislike ratings alone, it has placed these movies close together
in trait space! Beyond these characteristics, it is hard to interpret much about
the traits themselves at this stage. Instead, we’ll just have to see how useful
they are when it comes to making recommendations.

Review of concepts introduced in this section

symmetries A symmetry in a model is where parts of the model are in-
terchangeable or can act as equivalent to each other. When a model contains
symmetries, this means there are multiple configurations of the models vari-
ables that give rise to the same data. During inference, such symmetries cause
problems, since the posterior distributions will try to capture all these equiv-
alent configurations simultaneously, usually with unhelpful results. When a
model contains symmetries, it is usually necessary to do some kind of symmetry
breaking.

symmetry breaking Modifications to a model or inference algorithm that
allow symmetries to be removed, leading to more useful posterior distributions.
A typical method of symmetry breaking involves adding perturbations to the
initial messages in a message passing algorithms. Other approaches involve
making changes to the model to remove the symmetries, such as fixing the
values of certain latent variables or adding ordering constraints.

246 CHAPTER 5. MAKING RECOMMENDATIONS

Mulholland Drive

Usual Suspects, The

American Beauty

Kill Bill: Vol. 2

Groundhog Day

Fight Club

Léon: The Professional

Willy Wonka & the
Chocolate Factory

Pirates of the Caribbean:
The Curse of the Black Pearl

Toy Story 2

Harry Potter and the
Sorcerer's Stone

Lord of the Rings: The
Fellowship of the Ring, The

Good Will Hunting

Fargo

Shakespeare in Love

2001: A Space Odyssey Leaving Las Vegas

Speed

Saving Private RyanSilence of the Lambs, The

Twister

Robin Hood: Men in Tights

Rock, The

True Lies

Ghostbusters

BatmanLord of the Rings: The
Return of the King, The

Blair Witch Project, The

Back to the Future Part III

Shrek 2

Austin Powers: International
Man of Mystery

Gladiator

Die Hard

Star Wars: Episode V - The
Empire Strikes Back

Waterworld

Stargate

Indiana Jones and the Last
Crusade

Amelie (Fabuleux destin
d'Amélie Poulain, Le)

Million Dollar Baby

Honey, I Shrunk the Kids

Jumanji

Twelve Monkeys

Signs

Clueless

Ace Ventura: Pet Detective

Charlie's Angels

Terminator 2: Judgment Day

Patriot, The

Runaway Bride

Liar Liar

Sense and Sensibility

Ace Ventura: When Nature
Calls

-1.6

-1.1

-0.6

-0.1

0.4

0.9

1.4

1.9

-2.2 -1.7 -1.2 -0.7 -0.2 0.3 0.8 1.3 1.8 2.3

Tr
ai

t
2

Trait 1

Figure 5.14: Learned positions of movies in trait space. For readability, only a subset of points have been labelled
with the name of the movie (centered on the corresponding point). The two ‘anchor’ movies, The Usual Suspects
and Mulholland Drive are shown in red at (0,1) and (1,0).

5.4. OUR FIRST RECOMMENDATIONS 247

5.4 Our first recommendations

With our trained two-trait model in hand, we are now
ready to make some recommendations! During train-
ing we learned the (uncertain) position of each movie
and each person in trait space. We can now make a
prediction for each of the held out ratings in our vali-
dation set. We do this one rating at a time – that is, for
one person and one movie at a time. First, we set the
priors for the movie trait and the person preference

to the posteriors learned during training. Then we run
expectation propagation to infer the posterior distribu-
tion over likesMovie to compute the probability that
the person would like the movie. Repeating this over all ratings in the validation
set gives a probability of ‘like’ for each rating, which we can compare with the
ground truth like/dislike label. Figure 5.15 shows the predicted like probability
and the ground truth for the ratings from the first 25 people in the validation
set with more than five ratings.

Movies

(a) Inferred probability of like

Movies

(b) Ground truth like/dislike

Figure 5.15: Initial results of our recommender model. (a) Computed probabil-
ity of each person liking each movie. White squares correspond to probability
1.0, black to probability 0.0 and shades of grey indicate intermediate probabil-
ity values. (b) Ground truth – where white indicates that the person liked the
movie, black indicates they disliked it.

The first thing that stands out from Figure 5.15b is that people mostly like
movies, rather than dislike them. In a sense then, the task that we have set our
recommender is to try and work out which are the few movies that a person does
not like. Looking at the predicted probabilities in Figure 5.15a, we can see some
success in this task – because some of the darker squares do correctly align with
black squares in the ground truth. In addition, some rows are generally darker
or lighter than average indicating that we are able to learn how likely each
person is to like or dislike movies in general. However, the predictions are not

248 CHAPTER 5. MAKING RECOMMENDATIONS

perfect – there are many disliked movies that are missed and some predictions of
dislike that are incorrect. But before we make any improvements to the model,
we need to decide which evaluation metrics we will use to measure and track
these improvements.

5.4.1 Evaluating our predictions

In order to evaluate these predictions, we need to decide on some evaluation
metrics. As discussed in chapter 2, it makes sense to consider multiple metrics
to avoid falling into the trap described by Goodhart’s law. For the first metric,
we will just use the fraction of correct predictions, when we predict the most
probable value of likesMovie. For the two-trait experiment above, we see that
we get 84.8% of predictions correct. This metric is helpful for tracking the
raw accuracy of our recommender but it does not directly tell us how good our
recommendation experience will be for users. To do this, we will need a second
metric more focused on how the recommender will actually be used.

The most common use of a recommender system is to provide an ordered
list of recommendations to the user. We can use our predicted probabilities of
‘like’ to make such a list by putting the movie with the highest probability first,
then the one with the second highest probability and so on. In this scenario, a
reasonable assumption is that the user will scan through the list looking for a
recommendation that appeals – but that they may give up at some point during
this scan. It follows that it is most important that the first item in the list is
correct, then the second, then the third and so on through to the end of the list.
We would like to use an evaluation metric which rewards correct predictions at
the start of the list more than at the end (and penalises mistakes at the start
of the list more than mistakes at the end).

A metric that has this behaviour is Discounted Cumulative Gain (DCG)
which is defined as the sum of scores for individual recommendations, each
weighted by a discount function that depends on the position of the recommen-
dation in the list. Figure 5.16 shows the calculation of DCG for a list of five
recommendations. In this figure, the discount function used is 1

log2(position+1)

where position the position in the list, starting at 1. This function is often
used because it smoothly decreases with list position, as shown by the blue bars
in the figure. The score that we will use for a recommendation is the ground
truth number of stars that the person gave that movie. So if they gave three
stars then the score will be 3. Since we are calculating DCG for a list of five
recommendations, we sometimes write this as DCG@5.

5.4. OUR FIRST RECOMMENDATIONS 249

1st Lethal Weapon

2nd The Lion King

3rd Amadeus

4th Lost in Translation

5th Waterworld

1.00

0.63

0.50

0.43

0.39

1

log2(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1)

3 ×

2 ×

3 ×

5 ×

1 ×

= 3.00

= 1.00

= 1.29

= 3.15

= 0.39

Sum = 8.83

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔

Figure 5.16: Calculation of Discounted Cumulative Gain (DCG) for a list of five
movie recommendations.

We can only evaluate a recommendation when we know the person’s actual
rating for the movie being recommended. For our data set, this means that we
will only be able to make recommendations for movies from the 30% of ratings
in the validation set. Effectively we will be ordering these from ‘most likely to
like the movie’ to ‘least likely to like the movie’, taking the top 5 and using
DCG to evaluate this ordering.

One problem with DCG is that the maximum achievable value varies de-
pending on the ratings that the person gave to the validation set movies. If
there are 5 high ratings then the maximum achievable DCG@5 will be high.
But if there are only 2 high ratings then the maximum achievable DCG@5 will
be lower. To interpret the metric, all we really want to know is how close we
got to the maximum achievable DCG. We can achieve this by computing the
maximum DCG (as shown in Figure 5.17) and then dividing our DCG value by
this maximum possible value. This gives a new metric called the Normalized
Discounted Cumulative Gain (NDCG). An NDCG of 1.0 always means that
the best possible set of recommendations were made. Using the maximum value
from Figure 5.17, the NDCG for the recommendations in Figure 5.16 is equal
to 8.83/9.64 = 0.916.

250 CHAPTER 5. MAKING RECOMMENDATIONS

1.00

0.63

0.50

0.43

0.39

1

log2(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1)

5 ×

3 ×

2 ×

3 ×

1 ×

= 5.00

= 1.50

= 0.86

= 1.89

= 0.39

𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒 𝑟𝑎𝑡𝑖𝑛𝑔

Sum = 9.64

2nd Lethal Weapon

1st The Lion King

4rd Amadeus

3th Lost in Translation

5th Waterworld

Figure 5.17: Calculation of the maximum possible DCG for the five movies from
Figure 5.16. The maximum DCG is for the movies in decreasing order of the
number of stars in the ground truth rating.

We produce a list of recommendations for each person in our validation set,
and so can compute an NDCG for each of these lists. To summarise these in a
single metric, we then take an average of all the individual NDCG values. For
the experiment we just ran, this gives an average NDCG@5 of 0.857.

5.4.2 How many traits should we use?

The metrics computed above are for a model with two traits. In practice, we will
want to use the number of traits that gives the best recommendations according
to our metrics. We can run the model with 1, 2, 4, 8, and 16 traits to see how
changing the number of traits affects the accuracy of our recommendations.
We can also run the model with zero traits, meaning that it gives the same
recommendations to everyone – this provides a useful baseline and indicates
how much we are gaining by using traits to personalise our recommendations
to individual people. Note that when using zero traits, we do still include the
movie and user biases in the model.

Figure 5.18 shows how our two metrics vary as we change the number of
traits. Looking at the like/dislike accuracy in Figure 5.18a, shows that the
accuracy is essentially unchanged as we change the number of traits. But the
NDCG in Figure 5.18b tells a very different story , with noticeable gains in
NDCG@5 as we increase the number of traits up to around 4 or 8. Beyond
this point adding additional traits does not seem to help (and maybe even
reduces the accuracy slightly). The overall gain is relatively small, which shows
that though personalized recommendations are better than non-personalized
recommendations, they do not give as much improvement as we might expect.

5.4. OUR FIRST RECOMMENDATIONS 251

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

(a) Fraction of predictions correct

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

(b) Average NDCG@5

Figure 5.18: Accuracy and NDCG metrics computed for different numbers of
traits. The metrics for a random recommender are also shown for comparison.
To make the change in metrics visible in these bar charts, we have had to start
the y-axis at 0.8 rather than zero. In general, this practice should be avoided
since it falsely exaggerates the differences between the bars. Since we have
chosen to use it here and in some later charts, please do bear in mind that the
actual differences are smaller than the charts might suggest.

You may be wondering why we see an increase in average NDCG when there
is no increase in prediction accuracy. The answer is that NDCG is a more
sensitive metric because it makes use of the original ground truth star ratings,
rather than these ratings converted into likes/dislikes. This sensitivity suggests
that we would benefit by training our model on star ratings rather than just on
a binary like or dislike. In the next section, we will see what changes our model
needs in order to work with the full range of star ratings.

Review of concepts introduced in this section

Discounted Cumulative Gain A metric for a list of recommendations that
is defined as the sum of scores for each individual recommendation, weighted by
a discount function that depends on the position of that recommendation in the
list. The discount function is selected to give higher weights to recommendations
at the start of the list and lower weights towards the end. Therefore, the DCG
is higher when good recommendations are put at the start of the list than when
the list is reordered to put them at the end. See Figure 5.16 for a visual example
of calculating DCG.

Normalized Discounted Cumulative Gain A scaled version of the Dis-
counted Cumulative Gain, where the scaling makes the maximum possible value
equal to 1. This scaling is achieved by dividing by the actual DCG by the max-
imum possible DCG. See Figure 5.16 and Figure 5.17 for visual examples of
calculating a DCG and a maximum possible DCG.

252 CHAPTER 5. MAKING RECOMMENDATIONS

5.5 Modelling star ratings

Our model turns the full range of star ratings into a
simple like or dislike, which means it is throwing away
a lot of useful information. There is a world of differ-
ence between rating a movie at 3 stars and rating it
at 5 stars, yet we are treating both of these cases the
same. In order to make use of the difference between
different star ratings, we need to change our model to
work with the full range of ratings rather than a bi-
nary like/dislike. Not only will this let us train on star
ratings, but we will also be able to predict star ratings
– a double benefit!

We can make this change by building on the binary like/dislike model that
we have already designed. Inside this model we have an affinity variable
which is a continuous number representing how much a person likes a movie.
We currently threshold this affinity at zero and say that values above zero
mean the person likes the movie and values below zero mean that they do not
like the movie. To model different star ratings, we can assume that a higher
affinity means that a person will give a higher star rating. More precisely, rather
than thresholding only at zero, we can now introduce thresholds for each star
rating. If a person’s affinity for a movie is above the threshold for a particular
number of stars, then we expect them to give the movie at least that number
of stars.

To add these thresholds into our model, we need to make one additional
assumption. We need to decide whether the same thresholds should be used for
everyone, or whether different people can have different thresholds. Allowing
different thresholds might be useful – for example, it is possible that some people
give a really bad movie a rating of two stars, while other people give a really
bad movie a rating of one star or even half a star. If we want to model these
different behaviours, we would need to allow different people to have different
thresholds. This can be done but it would introduce problems of data scarcity
since some people might not have any ratings for particular thresholds. Rather
than tackle these problems, we will make the simplifying assumption that the
thresholds are the same for everyone. We can express this assumption precisely,
like so:

6 When two people have the same affinity for a movie, they will give it the
same number of stars.

Figure 5.19 shows the factor graph for an extended model that encodes this
assumption. In this model, we have added a new variable starThreshold which
is inside a stars plate, meaning that there is a threshold for each number of
stars.

5.5. MODELLING STAR RATINGS 253

traits

peoplemovies stars

hasStar

preferencetrait

starThreshold

traitAffinity

affinity

noisyAffinity

Gaussian(0,σ²)Gaussian(0,σ²)

Gaussian(0,10)

×

+

Gaussian(·,1)

>

Figure 5.19: Factor graph for a recommender model that can consume and
predict star ratings. Ratings are indirectly represented using binary values of
the variable hasStar as discussed in the text.

For each movie and person, the observed variable in this graph is now called
hasStar. This variable lies inside the stars plate and so has a value for each
number of stars. In other words, each single star rating is represented as a set
of binary variables. The binary variable for a particular number of stars is true
if the rating has at least that number of stars. As an example, a rating of three
stars means that the first three binary variables are true and the other two
are false. Figure 5.20 shows the relationship between the star rating and the
binary values used for the observation of hasStar.

254 CHAPTER 5. MAKING RECOMMENDATIONS

T T T F F

T T T T TT T T T F

T T F F FT F F F F

𝑟𝑎𝑡𝑖𝑛𝑔

𝑏𝑖𝑛𝑎𝑟𝑦

Figure 5.20: Relationship between different star ratings and the binary values
used for the hasStar variable in the factor graph of Figure 5.19.

When we train this model, we set hasStar to the observed values given in
Figure 5.20 for the corresponding rating. When using the model to make a
recommendation, we get back a posterior probability of each binary variable
being true. These can be converted into the probability of having a particular
number of stars using subtraction. For example, if we predict the probability of
having 3 or more stars is 70% and the probability of having 4 or more stars is
60%, then the probability of having exactly 3 stars must be 70%− 60% = 10%.
Using this trick, we can convert the individual binary probabilities back into
separate probabilities for each star rating.

There are a few more details we need to work out before we can train this
model. First, in our data set we need to be able to work with half-star ratings,
such as 3 1

2 stars. We can handle these by doubling the number of thresholds,
so that there are thresholds for both whole and half star ratings. Second, there
is a symmetry between the star thresholds and the biases – adding a constant
value to all user or movie biases and subtracting that value off all thresholds
leads to the same predictions. This can be solved by fixing one of the thresholds
to be zero – for our experiments we choose to fix the three star threshold to be
zero. Finally, if you look at Figure 5.20, you will note that the first binary value
is always true. This means that the affinity must always be greater than the
lowest threshold, so we can simply remove it from the model. In our case, that
means there will be no threshold for a 1

2 star and so the lowest threshold will
be for 1 star. With these changes in place, we are now ready to train!

5.5.1 Results with star ratings

Now that we can train on star ratings, we can use the same training data as
before (section 5.3) but without converting ratings to like/dislike. When we do
this training, we expect that the extra information coming from the star ratings
will allow us to locate movies more precisely in trait space. Back in Figure 5.14
we found that, after training on like/dislike, 158 of the movies had a posterior

5.5. MODELLING STAR RATINGS 255

variance of less than 0.2 in each dimension of trait space. After training on star
ratings, the number of movies with such low posterior variance increases to 539,
showing that we have indeed managed to locate movies more precisely.

As part of training the model, we also learn Gaussian posterior thresholds
for each star rating – these are shown in Figure 5.21.

x

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

20

40

60

80

100

1 star

1.5 stars

2 stars

2.5 stars

3 stars

3.5 stars

4 stars

4.5 stars

5 stars

Figure 5.21: Posterior distributions for star ratings thresholds from 1 star to
5 stars. The threshold for three stars is fixed to be exactly zero – all other
thresholds have been learned.

These threshold posteriors are worth looking at. The first thing to note is
that the thresholds are ordered correctly from 1 star through to 5 stars, as we
would expect. This ordering was not enforced directly in the model since the
priors for all the thresholds were the same – instead, the ordering has arisen from
the way the model has been trained. Another thing to note is that the posterior
distribution for 1 star is much broader than for other thresholds. This is because
there are very few half stars and one stars in the training set (to confirm this
look back at Figure 5.12). It is these ratings which are used to learn the 1
star threshold and so their relative scarcity leads to higher uncertainty in the
threshold location. A final note is that the half star thresholds are generally
closer to the star rating above than the one below. For example, the 3 1

2 star
threshold is much closer to the 4 star threshold than to the 3 star threshold.
This implies that when a person gives 3 1

2 stars to a movie, in their minds they
consider that to be almost a 4 star movie, rather than just better than a 3 star
movie. Another explanation is that some people may never use half stars (which
would explain why they are relatively scarcer than the surrounding whole stars),
which would introduce some bias in the inferred thresholds. It is an interesting
exercise to think about how the model could be changed to reflect the fact that
some people never use half stars.

Using our newly trained model, we can make predictions for exactly the
same people and movies as we did in section 5.4. Now our model is predicting
star ratings, we can plot the most probable star rating, instead of posterior
probabilities of like.

256 CHAPTER 5. MAKING RECOMMENDATIONS

Movies

(a) Inferred most probable number of stars

Movies

(b) Ground truth number of stars

Figure 5.22: Results of our recommender model with star ratings. (a) Predicted
most probable ratings, where white squares correspond to five stars, black to
half a star and shades of grey represent intermediate numbers of stars. (b)
Ground truth ratings using the same colour key.

Figure 5.22a shows nicely that we are now able to predict numbers of stars,
rather than just like or dislike. Comparing the two plots, we can see that
there are sometimes darker or lighter regions in our predictions corresponding
to those in the ground truth – but that equally often there are not. It is
almost impossible to look at Figure 5.22 and say whether the new model is
making better recommendations than the old one. Instead we need to make
a quantitative comparison, by re-computing the same metrics as before and
comparing the results. For NDCG, we can rank our recommendations by star
rating and compute the metric exactly as before. For like/dislike accuracy, we
need to convert our star predictions back into binary like/dislike predictions. We
can do this by summing up the probabilities of all ratings of 3 stars or higher – if
this sum is greater than 0.5, then we predict that the person will like the movie,
otherwise that they will dislike it. Figure 5.23 shows that our new model has a
significantly improved NDCG than the previous model, demonstrating the value
of using the full star ratings. The improvement even shows up in our relatively
insensitive fraction-correct metric, although the change is much smaller.

5.5. MODELLING STAR RATINGS 257

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

Initial

With stars

(a) Fraction of predictions correct

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

Initial

With stars

(b) Average NDCG@5

Figure 5.23: Comparison of two metrics for the old like/dislike model and the
new model with star ratings. The star ratings model gives a significant boost
to NDCG, and even shows a small improvement in like/dislike accuracy.

Because we add together probabilities of different star ratings when com-
puting that the like/dislike accuracy metric, we are throwing away information
about our recommendations. For example, we are throwing away whether we
predicted 3, 4 or 5 stars. The result will be to make the metric less sensitive
to improvements in accuracy. We only computed it for Figure 5.23 so that we
could compare to the results of the initial model. Now that we have predictions
of star ratings, we need to replace this metric with a new one that can make
use of ratings. For this new metric, we could look at the fraction of times that
the predicted rating correctly matched the ground truth rating. However, this
would mean that a prediction that is half a star out would be treated the same
as one that is four stars out. Instead, we can look at how far the predicted
number of stars was from the actual number of stars, so that the error is:

Error = |Predicted star rating −Ground truth star rating|. (5.1)

In equation (5.1), the vertical bars mean that we take the absolute size of the
difference. For example, if the prediction is two stars and the ground truth is
five stars, the error will be 3.0. The error will also be 3.0 if we swap these over
so that the prediction is five stars and the ground truth is two stars. Because
we use this absolute size, we call this error the absolute error. To compute
a metric over all predictions, we average the absolute errors of each prediction,
giving a metric called the mean absolute error (MAE).

Number of traits

0 1 2 4 8 16

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Figure 5.24: Mean absolute error for different numbers of traits in our new star
rating model. The MAE generally decreases slightly as we increase the number
of traits.

258 CHAPTER 5. MAKING RECOMMENDATIONS

Figure 5.24 shows this metric computed for varying numbers of traits in
our new model. Taking all three metrics together, having more traits generally
seems to give better quality recommendations. So we can choose to use the
16-trait version of our latest model which gives an NDCG@5 of 0.881 and an
MAE of 0.663. While this gives us our best performing recommender system
yet, it would still be good to make further improvements. In the next section
we’ll diagnose where we are still making mistakes and look at one way to further
improve our recommendation accuracy.

Review of concepts introduced in this section

absolute error The difference between a predicted value and the correspond-
ing ground truth value, ignoring the sign of the result. The absolute error
between 2 stars and 5 stars is 3. The absolute error between 5 stars and 2 stars
is also 3. Because we ignore the sign, the absolute error is always positive (or
zero).

mean absolute error The average (mean) of the absolute error between a
predicted value and the ground truth value, across all predictions. The best
possible value for this metric is 0. All other values will be positive numbers,
with smaller values considered better than larger ones.

5.6. ANOTHER COLD START PROBLEM 259

5.6 Another cold start problem

When we plotted the position of movies in trait space (Figure 5.14), we showed
only those movies where the position was known reasonably accurately (that is,
where the posterior variance was low). It follows that there are many movies
where the posterior variance is larger, possibly much larger. This means that
in some cases we essentially do not know where the movie is in trait space.
We might expect this to be the case for movies which do not have very many
ratings. It follows that if we do not know where a movie is in trait space, then
we might expect the accuracy of recommendations relating to the movie to be
low. How can we diagnose if this is the case?

First, it would be useful to understand how many ratings each movie typi-
cally has. Figure 5.25 shows the number of ratings for each movie in the data
set as a whole, with the movies ordered from most ratings on the left to least
ratings on the right.

Movie rank

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

0

50

100

150

200

250

300

Figure 5.25: The number of ratings given for each movie in the data set as a
whole. The movies are ordered from most ratings on the left to least ratings on
the right.

From Figure 5.25, we can see that only about 500 of the 9000 movies have
more than 50 ratings. Looking more closely, only around 2000 movies have more
than 10 ratings. This leaves us with 7000 movies that have 10 or fewer ratings
– of which about 3000 have only a single rating! It would not be surprising if
such movies cannot be placed accurately in trait space, using rating information
alone. As a result, we might expect that our prediction accuracy would be lower
for those movies with few ratings than for those with many.

To confirm this hypothesis, we can plot the mean absolute error across the
movies divided into groups according to the number of ratings they have in the
training set. This plot is shown in Figure 5.26 for an experiment with 16 traits.
For this experiment, we added into the validation set the movies that do not
have any ratings in the training set (the left-hand bar in Figure 5.26). This
provides a useful reference since it shows what the MAE is for movies with no

260 CHAPTER 5. MAKING RECOMMENDATIONS

ratings at all. The plot shows that when we have just one rating (second bar),
we do not actually reduce the MAE much compared to having zero ratings (first
bar). For movies with more and more ratings, the mean absolute error drops
significantly, as shown by the third and fourth bars in Figure 5.26. Overall, this
figure shows clearly that we are doing better at predicting ratings for movies
that have more ratings – and very badly for those movies with just one.

Number of ratings

0 ratings

(1,015)

1 rating

(710)

2 - 7

ratings

(2,017)

8 - 251

ratings

(2,034)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.26: Mean absolute error for movies with different numbers of ratings
in the training set, for a model with 16 traits. Each bar is labelled with the
range of ratings and, in brackets, the number of movies that fall into that range.
For example, the left-hand bar gives the MAE for movies with no ratings in the
training set, of which there are 1,015. Comparing the four bars shows that
movies with many ratings have substantially lower prediction errors than those
with few or zero ratings.

Figure 5.26 confirms that we have an accuracy problem for movies with few
ratings. This is particularly troubling in practice since newly released movies
are likely to be the most useful recommendations but are also likely to have
relatively few ratings. So how can we solve this problem? Recalling section 4.6
from the previous chapter, we can think of this as another cold start problem.
We need to be able to make recommendations about a movie even though we
have few or even zero ratings for that movie.

Apart from ratings, what other information do we have that could be used
to improve our recommendations? Looking at our data set, we see that it also
includes the year of release and the genres that each movie belongs to. A sample
of this additional information is shown in Table 5.4.

5.6. ANOTHER COLD START PROBLEM 261

Id Name Year Genres

10 GoldenEye 1,995 {Ac�on, Adventure, Thriller}

17 Sense and Sensibility 1,995 {Drama, Romance}

39 Clueless 1,995 {Comedy, Romance}

47 Seven (a.k.a. Se7en) 1,995 {Mystery, Thriller}

50 Usual Suspects, The 1,995 {Crime, Mystery, Thriller}

2,193 Willow 1,988 {Ac�on, Adventure, Fantasy}

2,294 Antz 1,998 {Adventure, Anima�on, Children, Comedy, Fantasy}

2,455 Fly, The 1,986 {Drama, Horror, SciFi, Thriller}

2,968 Time Bandits 1,981 {Adventure, Comedy, Fantasy, SciFi}

3,671 Blazing Saddles 1,974 {Comedy, Western}

Table 5.4: A sample of the additional information available for each movie.

If we could use this information to place our movies more accurately in trait
space, perhaps that would improve our recommendations for movies where we
only have a few ratings. We can try this out by adding this information to our
model using features, just like we did in the previous chapter.

5.6.1 Adding features to our model

To add features to our recommender model, we can re-use a chunk of the classi-
fication model from section 4.3. Specifically, we will introduce variables for the
featureValue for each movie and feature, along with a weight for each feature
and trait. As before, the product of these will give a featureScore. The sum
of these feature scores will now be used as the mean for the trait prior – which
we shall call traitMean. It follows that the prior position of the movie in trait
space can now change, depending on the feature values, before any ratings have
been seen! The resulting factor graph is shown in Figure 5.27 – the unchanged
part of the graph has been faded out to make the newly-added part stand out.

262 CHAPTER 5. MAKING RECOMMENDATIONS

stars

featureValue

weight

trait

featureScore

traitMean

Gaussian(0,1)

×

+

Gaussian(·,σ²)

Figure 5.27: Factor graph for a recommender model that can consume feature
values for individual movies. To emphasize the variables and factors which have
been added, the remaining parts of the graph have been faded out.

5.6. ANOTHER COLD START PROBLEM 263

In taking this chunk of model from the previous chapter, we must remember
that we have also inherited the corresponding assumptions. Translated into the
language of our model, these are:

7 The feature values can always be calculated, for any movie.

8 If a movie’s feature value changes by x, then each trait mean will move
by weight × x for some fixed, continuous, trait-specific weight.

9 The weight for a feature and trait is equally likely to be positive or nega-
tive.

10 A single feature normally has a small effect on a trait mean, sometimes
has an intermediate effect and occasionally has a large effect.

11 A particular change in one feature’s value will cause the same change in
each trait mean, no matter what the values of the other features are.

We explored these assumptions extensively in the previous chapter, so will not
discuss them again here. However, it would be a worthwhile exercise to spend
some time reflecting on how each assumption will affect the behaviour of our
recommender system.

As in the previous chapter, we need to decide how to represent our movie
information as features. The features that we will use are:

1. A constant feature set to 1.0 for all movies, used to capture any fixed bias.

2. A ReleaseYear feature which is represented using buckets, much like the
BodyLength feature we designed in section 4.4. We choose the buckets to
be every ten years until 1980 and then every five years after that – giving
17 buckets in total.

3. A Genres features which has the same design as the Recipients feature
from section 4.5. That is, a total feature value of 1.0 is split evenly among
the genres that a movie has. So if a movie is a Drama and a Romance,
the Drama bucket will have a value of 0.5 and the Romance bucket will
also have a value of 0.5.

This data set contains additional information about the movies but not about
the people giving the ratings (such as age or gender). If we had such additional
information we could incorporate it into our model using features, just as we
did for movies. All we would need to do is add a features model for the mean
of the preference prior of the same form as the one used for the trait prior
in Figure 5.27. The resulting model would then be symmetrical between the
movies/traits and people/preferences.

264 CHAPTER 5. MAKING RECOMMENDATIONS

5.6.2 Results with features

Let’s see what effect using movie features has on our accuracy metrics. Fig-
ure 5.28 shows the mean absolute error for models with and without features,
for groups of movies with different numbers of ratings. We can see that adding
features has improved accuracy for all four groups, with the biggest improve-
ments in the groups with zero ratings. While there is still better accuracy for
movies with more ratings, using features has helped narrow the gap between
these movies and movies where few ratings are available.

Number of ratings

0 ratings

(1,015)

1 rating

(710)

2 - 7

ratings

(2,017)

8 - 251

ratings

(2,034)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

With stars

With stars and features

Figure 5.28: Including feature information in our model has reduced the pre-
diction error, particularly for movies with only no ratings in the training set.

We can also look at the effect of using features on our overall metrics. These
are shown for different numbers of traits in Figure 5.29. For comparison with
previous results, we once again exclude ratings for movies that do not occur
in the training set (that is, the left-hand bar of Figure 5.28). The chart shows
that features increase accuracy whichever metric we look at. Interestingly, this
increase is greater when more traits are used. The explanation for this effect is
that we are not directly using features to make recommendations but instead
we are using them indirectly to position movies in trait space. Using more traits
helps us to capture the feature information more precisely, since a position in
trait space conveys more information when there are more traits.

5.6. ANOTHER COLD START PROBLEM 265

Number of traits

0 1 2 4 8 16

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(a) Mean absolute error (MAE)

Number of traits

0 1 2 4 8 16
0.8

0.82

0.84

0.86

0.88

0.9

Initial

With stars

With stars and features

(b) Average NDCG@5

Figure 5.29: Comparison of MAE and NDCG metrics for each of our models
(note that MAE cannot be calculated for the initial model because it does not
predict star ratings). According to these metrics, feature increases accuracy for
any model with at least one trait, with the increase being larger as more traits
are used.

Overall, using features has provided a good increase in accuracy, particularly
for items with few ratings. This means that our model should now do a much
better job of making recommendations, particularly for new movies – which is
a very desirable characteristic indeed!

5.6.3 Final thoughts

In this chapter, we have developed a flexible recommender model that can con-
sume like/dislike labels or full star ratings. In addition, the model can make use
of additional information about either the items being recommended or the peo-
ple for whom recommendations are being made. This model is already enough
to be valuable for many customers of Azure machine learning – and indeed is
very close to the one that was actually used in Azure ML. The main difference
is that the Azure ML model can also learn personalised star ratings thresholds
– this was achieved by moving the starThreshold variable inside the people
plate and giving each threshold a suitably informative prior, to allow for data
scarcity.

In developing our model, we have assumed that good recommendations are
ones where the user will rate the item highly, but in fact this may not be the
case. For a science fiction fan it may be likely that they would rate Star Wars
highly, but it would be a poor recommendation because they would probably
have seen it already. In other words, a good recommendation is for a movie
that you are likely to enjoy but not to have already seen. Real recommendation
systems keep a record of what movies a person has seen through the system and
these are automatically removed from any list of recommendations. But such
systems have no knowledge of what movies have been watched outside of the
system. We could modify our model to predict both whether someone would
like a movie and whether they are likely to have seen it. Using both of these
predictions together could lead to much more valuable recommendations.

266 CHAPTER 5. MAKING RECOMMENDATIONS

Similar items are nearby in trait space.

By learning the positions of items in trait
space, we have also learned which items are sim-
ilar since these will be close to each other in trait
space. Given a target item, we can work out
which items are similar to it by finding nearby
items in trait space. More precisely, we do this
by making recommendations for an imaginary
person located at the same position in trait space as the target item. The re-
sult of this process is useful for making item-specific recommendations, such as
“people who liked this movie, also liked”. Item relatedness can also be used to
improve the diversity of a set of recommendations. For example, we might not
want to have two very similar movies in a list of recommendations (such as two
movies in the same series). We could use the distance between the movies in
trait space to remove such similar movies and so create a more diverse list of
recommendations.

There are further model extensions that could usefully be made. One would
be to make use of implicit feedback about an item. For example, many people
never rate any movie, but instead just watch them. Even in this case, there is
still useful information about the movies that the person likes. We may assume
that they watch movies that they expect to like – so watching a movie is an
implicit signal that the person liked the movie. It is harder to get an implicit
signal that a person did not like a movie, so often when using implicit feedback
there is positive-only data. In other words we have only the good ratings and
none of the bad ones. Having a model that can cope with such positive-only
data would be very useful – the most common approach today is to treat a
random sample of unrated movies as if they were negatively rated.

Even when we do have ratings, the information about which ratings we
have and which we do not have is very valuable. Having a rating is a bit like
watching a movie – it provides a positive signal about liking the movie. The
best performing recommender systems make use of the fact that missing ratings
provide information about what a person likes or dislikes. With any piece of
data that can be missing, we can model whether or not it is missing, as well as
modelling the data itself. In the next chapter, we will discuss different kinds of
missing data and how to handle them – while building models for understanding
childhood asthma.

Chapter 6

Understanding Asthma

Asthma is the most common chronic disease of childhood and can
have serious outcomes for those who suffer from it. Studies have
shown that children with allergies are generally more likely to de-
velop asthma. A better understanding of the relationship between
allergies and asthma could improve detection, diagnosis and treat-
ment of childhood asthma. Can model-based machine learning help
provide this deeper understanding?

Asthma is a very common disease which af-
fects around 5% of people in the UK [Ross An-
derson et al., 2007] and about 7% in the US
[Fanta, 2009]. Globally around 250,000 people
die each year from asthma (Global Initiative for
Asthma, 2011). If we could better understand
what causes people to develop asthma, it would
have a hugely beneficial impact on asthma de-
tection, diagnosis and treatment. One known
risk factor for asthma is if a person has aller-
gies, but the relationship between developing
allergies and developing asthma is not well un-
derstood. An improved understanding of this
relationship could potentially allow early detec-
tion of the kind of severe asthma that can lead
to hospitalisation or worse.

The Manchester Asthma and Allergy Study
(MAAS) is a study designed to help under-
stand the causes of childhood asthma and al-
lergies. In particular, the study aims to under-
stand why some children with allergies develop
asthma while others do not. MAAS is a birth
cohort study – in other words, people were re-

267

https://en.wikipedia.org/wiki/Epidemiology_of_asthma
https://en.wikipedia.org/wiki/Epidemiology_of_asthma
http://www.maas.org.uk/

268 CHAPTER 6. UNDERSTANDING ASTHMA

cruited into the study at birth – and consists of
around 1,000 people. The study began in 1995 and continues to this day, col-
lecting ongoing data about the study participants, who are now young adults.
As you might imagine, a huge amount of dedication and commitment is required
of these participants and their families – we and the study team are immensely
grateful to them all!

In this chapter, we will look at how to apply model-based machine learning
to data collected in this study, to model the onset of childhood allergies and see
how this relates to the development of asthma. This kind of machine learning
application is different to those we have looked at in previous chapters, because
we are interested in improving understanding as a primary goal of the project,
rather than predicting who will develop asthma without any understanding of
why. It’s worth looking at these two contrasting goals in a bit more detail:

• Predictive machine learning – the goal is to make predictions, without
requiring an explanation of the predictions. This kind of goal is common
when building automated systems where explanations are not needed.

• Explanatory machine learning – the goal is to explain or understand
patterns in the data. This kind of goal is common when doing scientific
or medical research, where there is a human in the loop who wishes to
understand the processes that give rise to the data.

Often there are elements of both of these goals in a particular machine learning
project. For example, when doing predictions it may be useful to provide some
explanation of those predictions. And even when the primary goal is improved
understanding, such as in this asthma project, it may still be useful to apply
that understanding to make predictions, such as predicting whether a child will
develop asthma.

The model developed in this chapter was created as part of a collabora-
tion with the MAAS team, particularly Professors Adnan Custovic and Angela
Simpson, as described in Simpson et al. [2010] and Lazic et al. [2013].

6.1. A MODEL OF ALLERGIES 269

6.1 A model of allergies

Our primary goal is to improve our understanding
of allergy development, as it relates to childhood
asthma, by looking for patterns in the MAAS data.
To understand the relevant data in the study, we
need to learn a little bit about diagnosing allergies.
The doctors in the study used two types of test
to try to detect if a person is allergic to a specific
allergen, such as cat hair or peanuts. The two
types of test were:

• A skin prick test where a drop of allergen
solution is placed on the patient’s skin (see
image) which is then pricked with a needle.
If the skin shows an immune response in the
form of a red bump of a certain size, then the
test is positive, otherwise it is negative.

• An allergen-specific IgE test – this is a blood
test that looks for a kind of antibody called
Immunoglobulin E (IgE) that specifically tar-
gets a particular allergen. The presence of
this antibody is an indicator that the patient
is allergic to that allergen. If this antibody
is present in sufficient quantities the test is
positive, otherwise negative.

If a child has a positive skin prick test or IgE test for an allergen, then they are
said to be sensitized to that allergen.

For the children taking part in this study, both of these tests were performed
for eight allergens: dust mite, cat, dog, pollen, mould, milk, egg and peanut.
So that the development of allergies could be tracked over time, the tests were
repeated at different ages (1, 3, 5 and 8). Therefore, the available data points
are the two test results for each allergen, for each child, at each of the four ages.

The clinicians on the study believe that different patterns of allergies make
children susceptible to different diseases, some of which may have significant
impact on the child’s health (such as severe asthma) and some of which may be
more benign (such as mild hayfever). The goal of the project is to identify such
patterns and see if they are indicative of developing particular diseases and of
the severity of the disease. Our task is to develop a model of the allergen data
set that can achieve this.

6.1.1 Modelling test results

To start with, let’s consider a model of a child’s test results for one allergen
at one point in time. First, we need variables for the results of each test –

270 CHAPTER 6. UNDERSTANDING ASTHMA

we will call these skinTest and igeTest. These variables will be true if the
corresponding test is positive and false if the test is negative.

Remember that the purpose of these tests is to try and detect whether a
child is actually sensitized (allergic) to a particular allergen. However, the tests
are not perfectly consistent – for example, it is not unusual for a child to have
a positive IgE test but a negative skin test. To cope with such inconsistencies,
we can have a variable representing whether the child is truly sensitized to the
allergen, which we will call sensitized. This variable will be true if the child
is actually sensitized to the allergen and false if they are not sensitized. We
then allow for the results of the tests to occasionally disagree with the value of
this variable. In other words, we assume that each test can give a false positive
(where the test is positive but the child is not sensitized) or a false negative
(where the test is negative but the child is sensitized).

If a child is sensitized to a particular allergen (sensitized=true), then a
skin prick test will be positive (skinTest=true) with some probability, which
we will call probSkinIfSens. Since we expect the test to be mostly correct we
would expect this probability to be high but less than one, since a skin prick test
can give false negatives. Conversely, even if a child is not sensitized to a par-
ticular allergen (sensitized=false), then we might occasionally expect a skin
prick test to be positive, but with some low probability probSkinIfNotSens.
Although this probability is low, we still expect it to be greater than zero be-
cause a skin prick test can give false positives.

These two probabilities together define a conditional probability table for
skinTest conditioned on sensitized.

sensi�zed skinTest=true (posi�ve) skinTest=false (nega�ve)

true probSkinIfSens 1 - probSkinIfSens

false probSkinIfNotSens 1 - probSkinIfNotSens

Table 6.1: The conditional probability table for P (skinTest|sensitized). Ta-
ble columns correspond to values of the conditioned variable skinTest, rows
correspond to values of the conditioning variable sensitized, and table cells
contain the conditional probability values.

We have introduced these two probabilities as random variables in our model
because we will want to learn them from data, in order to determine the false
positive and false negative rates for the skin prick test. In order to learn their
values, we must provide suitable prior distributions for each variable, that en-
code our assumptions about them. Let’s write down those assumptions:

1 If a child is sensitized to a particular allergen, there is a high probability
that they will get a positive test.

2 If a child is NOT sensitized to a particular allergen, there is a low proba-
bility that they will get a positive test.

6.1. A MODEL OF ALLERGIES 271

skinTest

sensitized

probSkinIfSens probSkinIfNotSens

Beta(2,1) Beta(1,2)

Table

Figure 6.1: A model relating the result of a skin prick test (skinTest) to the
underlying allergic sensitization state (sensitized). The skinTest variable is
observed to equal the actual outcome of the test and so is shown shaded.

skinTest igeTest

sensitized

probSkinIfSens probSkinIfNotSens probIgeIfSens probIgeIfNotSens

Beta(2,1) Beta(1,2) Beta(2,1) Beta(1,2)

Table Table

Figure 6.2: A model relating the results of both kinds of allergy test to the
underlying allergic sensitization state. Each type of test has its own probability
variables which means that each test can have different false positive and false
negative rates. The test results are observed and so are shown shaded.

As in section 2.6, we can use beta distributions as prior distributions over
probabilities that can represent these assumptions. Assumption 1 says that we
expect probSkinIfSens to be high so we can use a Beta(2,1) prior which favours
higher probability values. Assumption 2 says that we expect probSkinIfNotSens
to be low so we can use a Beta(1,2) prior which favours low probability values.
Armed with these prior probabilities, we can now draw a factor graph for a skin
test, using the Table factor that we introduced back in section 2.6.

Now that we have a model for a skin test, we can add in the corresponding
model for an IgE test. We again need probability variables for the probability of
a positive test if sensitized probIgeIfSens and if not sensitized probIgeIfNotSens

with the corresponding beta distribution priors. The sensitized variable is
shared between the two tests, because both tests are attempting to detect the
same underlying sensitization. The resulting factor graph for both tests is shown
in Figure 6.2.

Inference in this model enables us to fuse the outcomes of both tests into
a single underlying sensitization state. Learning the probabilities of true and
false positives will let the model learn which test to pay most attention to.
For example, if a test has a high false positive probability, then a positive

272 CHAPTER 6. UNDERSTANDING ASTHMA

outcome would influence the inference of the sensitization state less than a
positive outcome for a test with a low false positive probability.

6.1.2 Modelling tests through time

For each child, we have test measurements at multiple points in time – ages 1,
3, 5 and 8. Such a collection of measurements is known as a time series, and
analysis of such data is known as time series analysis. To understand the
development of allergies, we need to build a model of a time series of allergy
test results.

We could start building a time series model by duplicating the factor graph of
Figure 6.2 at each time point. This would introduce a separate sensitized vari-
able at each age, which we could call sensitized1, sensitized3, sensitized5
and sensitized8. It would also introduce separate test result variables at each
age, which we could similarly call skinTest1, igeTest1, skinTest3, igeTest3
and so on. However, directly duplicating the factor graph would also mean hav-
ing separate variables at each time point for the probability of a positive test
given sensitized/not sensitized. Do we really expect the false positive and false
negative rates for the tests to change over time? If exactly the same tests were
done at each age, it would be reasonable to assume that the false positive and
false negative rates did not change over time. Let’s write down this assumption:

3 For each type of test, the false positive and false negative rates are the
same for all such tests carried out in the study.

The consequence of this assumption is that the skin test probability variables
(probSkinIfSens, probSkinIfNotSens) and the IgE test probability variables
(probIgeIfSens, probIgeIfNotSens) will be shared across all time points. The
result of this sharing is the factor graph of Figure 6.3.

You might wonder why we have drawn out the variables for each time point,
rather than use a plate to collapse them all together. This is because, when
modelling time series, we expect variables later in time to depend on the values
of variables earlier in time. By drawing out all variables, we can now add factors
connecting variables across time. But what should these factors be?

At age 1, there is a certain initial probability that a child will already be
sensitized to a particular allergen – let’s call this probSens1. Now, suppose the
child is not sensitized at age 1 (sensitized1=false), there is some probability
that they will become sensitized by age 3 – let’s call this probGain3. Conversely,
if the child is sensitized at age 1 (sensitized1=true), there is some probability
that they retain that sensitization to age 3 – let’s call this probRetain3. We
can model this using a Table factor, just as we did for modelling the skin and
IgE tests.

When we consider age 5, we need to ask ourselves a question: do we think
that the sensitization at age 5 depends on both previous sensitizations (at ages
1 and 3), or just the most recent one (at age 3). Similarly, do we think that
sensitization at age 8 depends on all three previous sensitizations (at ages 1, 3

6.1. A MODEL OF ALLERGIES 273

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

probSkinIfSens probSkinIfNotSens

probIgeIfSens probIgeIfNotSens

sensitized1 sensitized3 sensitized5 sensitized8

Beta(2,1) Beta(1,2)

Beta(2,1) Beta(1,2)

Table

Table

Table

Table

Table

Table

Table

Table

Figure 6.3: An initial model of a time series of allergy test results, which are explained by a series of underlying
sensitizations. The false positive/false negative probability variables for each test are shared across all time
points.

and 5) or just the most recent one (at age 5). Either of these assumptions might
be reasonable, depending on the details of how the immune system functions.
For now, we will assume that just the most recent sensitization is relevant, since
that simplifies the model the most:

4 Whether a child is sensitized to an allergen at a particular time point de-
pends only on whether they were sensitized to that allergen at the previous
time point.

This kind of assumption is so common in time series modelling that it even
has a name – it is called a Markov assumption after the Russian mathe-
matician Andrey Markov. Our Markov assumption means that we can model
sensitization at ages 5 and 8 just like we did at age 3. So for age 5, we have vari-
ables probGain5 and probRetain5 for the probabilities of gaining or retaining
sensitization between the ages of 3 and 5. Similarly, for age 8, we have variables
probGain8 and probRetain8 for the probabilities of gaining or retaining sensi-

https://en.wikipedia.org/wiki/Andrey_Markov

274 CHAPTER 6. UNDERSTANDING ASTHMA

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

sensitized1

probSens1

sensitized3

probGain3

probRetain3

sensitized5

probGain5

probRetain5

sensitized8

probGain8

probRetain8

Bernoulli

Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

Figure 6.4: An improved time series model where the allergic sensitization at each point in time, depends on
the sensitization at the previous point in time. The variables and factors relating to the test false positive/false
negative rates have been dimmed, to emphasize the new factors added in the model.

tization between the ages of 5 and 8. As for age 3, we can model sensitivity at
ages 5 and 8 using a Table factor, giving the factor graph of Figure 6.4.

Looking at Figure 6.4, you can see the chain of factors connecting the sen-
sitization variables through time, from sensitized1 through to sensitized8.
This kind of chain structure is a common feature of time series model that make
Markov assumptions, and so is called a Markov chain.

6.1.3 Completing the model

To complete our time series model, we need to extend it to cover multiple al-
lergens and multiple children. We can add plates for allergens and children and
place the sensitization and skin/IgE test variables inside both plates, since there
are tests and sensitization states for every child and allergen. Assumption 3
says that the false positive and false negative rates of our tests are the same
throughout the study, and so the variables probSkinIfSens, probIgeIfSens,
probSkinIfNotSens and probIgeIfNotSens lie outside both plates. This leaves
only the variables relating to the probability of initial having, gaining and retain-
ing sensitization. We want these variables to be able to vary between allergens,
so we can learn if different allergies are gained or lost at different points in time.
So these variables must lie inside the allergens plate. But if we are trying
to learn patterns of gaining or losing sensitization that are common to multiple
children, we must have these probability variables shared across children. Right
now, the only way of doing this is to place them outside the children plate.

6.1. A MODEL OF ALLERGIES 275

allergens

children

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

probSens1 probGain3

probRetain3

probGain5

probRetain5

probGain8

probRetain8

sensitized1 sensitized3 sensitized5 sensitized8
Bernoulli

Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

Figure 6.5: A complete model of a set of allergy tests for multiple children and multiple allergens. Plates are
used to duplicate certain variables across children and allergens (see text for discussion). As in Figure 6.4, the
variables and factors relating to the test false positive/false negative rates have been dimmed, to make the factor
graph easier to read and to emphasise the Markov chain.

This corresponds to the following assumption, which is the final assumption of
the model:

5 The probabilities relating to initially having, gaining or retaining sensiti-
zation to a particular allergen are the same for all children.

Given this assumption, we can now draw the factor graph with plates, where
the variables have been appropriately placed inside or outside each plate (see
Figure 6.5).

Reviewing Figure 6.5, you can see that:

• the test false positive/false negative probabilities are outside both plates
and so are shared across all children and allergens;

• the probabilities of initially having, gaining and retaining sensitization
are inside the allergens plate but outside the children plate, so are shared
across children but can differ across allergens;

• the test results and sensitization are inside both plates, since there are
tests and sensitization states for each child and allergen.

276 CHAPTER 6. UNDERSTANDING ASTHMA

Given these plates, we now have a complete model that we can use with our
data set of skin and IgE test results.

6.1.4 Reviewing our assumptions

As in previous chapters, we should take a moment to review our modelling
assumptions. They are shown all together in Table 6.2.

1 If a child is sensitized to a particular allergen, there is a high proba-
bility that they will get a positive test.

2 If a child is NOT sensitized to a particular allergen, there is a low
probability that they will get a positive test.

3 For each type of test, the false positive and false negative rates are
the same for all such tests carried out in the study.

4 Whether a child is sensitized to an allergen at a particular time point
depends only on whether they were sensitized to that allergen at the
previous time point.

5 The probabilities relating to initially having, gaining or retaining sen-
sitization to a particular allergen are the same for all children.

Table 6.2: The five assumptions encoded in our allergy model.

Assumption 1 and Assumption 2 seem to be safe assumptions – doctors
would not use these tests if they were not correct most of the time. Assump-
tion 3 seems like a plausible assumption, but we might worry that the tests
have different false positive/false negative rates for different allergens. It might
also be possible that the test was improved or updated during the study and so
that the rates would change over time. To check this out we consulted with the
MAAS clinicians and they confirmed that the tests were performed exactly the
same way throughout the study – the same test methodology, the same allergen
solutions, even the same person doing the tests! So it seems like this assumption
is a relatively safe one.

Assumption 4 is our Markov assumption – this is a common simplifying
assumption but is also commonly criticised as being too simplistic. For exam-
ple, in our case, it says that the probability of gaining/retaining sensitization
depends only the sensitization state at the previous time point and not, for ex-
ample, on how long the child has had the sensitization (or lack of sensitization).
Nonetheless, this assumption keeps the model simple and so we will stick with
it.

Finally, Assumption 5 says that all children have the same patterns of
gaining and losing sensitization. This assumption goes against the very purpose
of the project, which is to identify how these patterns vary between children.

6.1. A MODEL OF ALLERGIES 277

We will spend much of the rest of this chapter looking at how to improve on
this assumption, but it is useful to keep it in place for now so we explore the
behaviour of our new model.

Review of concepts introduced in this section

allergen A substance which someone can be allergic to, such as cat hair or
peanuts.

skin prick test A test where a drop of allergen solution is placed on the
patient’s skin, which is then pricked with a needle. If the skin shows an immune
response in the form of a red bump of a certain size, then the test is positive,
otherwise it is negative.

IgE test A blood test that looks for a kind of antibody called Immunoglob-
ulin E (IgE) that specifically targets a particular allergen. If this antibody is
present in sufficient quantities the test is positive, otherwise negative.

time series A series of data points, listed in time order, that represent the
measurement of some quantity over time – such as a stock price, blood pressure
or population counts.

time series analysis Analysis of a time series, so as to understand the time-
varying process underlying the time series data.

Markov assumption The assumption that a state of a process depends only
on the previous state of that process, and not any earlier states. Named after
the Russian mathematician Andrey Markov.

Markov chain A random process such that the probability distribution of
the next state depends only on the previous state and not on any earlier state.
In a factor graph, a Markov chain appears as a chain of time series variables
with adjacent variables connected by factors.

278 CHAPTER 6. UNDERSTANDING ASTHMA

6.2 Trying out the model

Now that we have a complete model, we are ready to try it out on some study
data. As we’ve emphasised many times before in this book, when using a real
data set, it is essential to look carefully at the data set to make sure that it
is complete, correct and has the form that you expect. Remember that many
common machine learning problems are caused by problems with data (such as
those listed in section 2.5). A good way to check your data set is to construct
visualisations that let you to see at a glance what it looks like. In this case, we
need to create visualisations of the test results for each child, allergen and time
point. However, this study data set contains private medical data and so we
cannot share the data publicly in this book, even in the form of a visualisation.
The most important thing that we learned from doing this visualisation is that
there are a lot of test results missing from the data set.

When there are missing data, it is always worth analysing to understand
why they are missing. In Figure 6.6, we plot the number of test results in the
data set (whether positive or negative) for each age and type of test.

Test type and age

Skin1 IgE1 Skin3 IgE3 Skin5 IgE5 Skin8 IgE8
0

200

400

600

800
Mite

Cat

Dog

Pollen

Mould

Milk

Egg

Peanut

Figure 6.6: The test results recorded for each of the two types of tests, split by
age of child.

You can see several different patterns of missing data in Figure 6.6. First,
the plot shows that there are ages and test types that have no data for particular
allergens. For example, peanut has no results at all for ages 1 and 3, and only
IgE results at age 5. Mould has no IgE results at all, and no skin test results at
age 1. Second, there is a lot more missing data at early ages, particularly age
1. Third, the plot shows that there is a lot more missing data overall for IgE
tests than skin tests. We need to take into consideration the effect of all these
missing data points.

6.2.1 Working with missing data

6.2. TRYING OUT THE MODEL 279

Missing data can obscure or distort
the patterns in a data set

Missing data can introduce bias into the posterior dis-
tributions computed by running inference on a model,
leading to incorrect or misleading results. Whether or
not this effect will occur, and how big the bias will
be, depends on why the data points are missing in the
first place. In statistics, it is common to consider three
kinds of missingness, which are referred to using the
following (quite confusing!) terms:

• missing completely at random (MCAR) –
where the missing data points occur entirely at
random. In other words, the fact that the data is
missing is independent of the value of the missing
data point (the test result that would have been given had the test actually
happened).

When data is MCAR, the remaining, non-missing,
data points are effectively just a random subset
of the overall data set. In this case, the posterior
distributions computed by probabilistic inference
will be unbiased by the missing data. Unfortu-
nately, in reality, missing data is rarely missing
completely at random. However, it may be an
acceptable approximation to assume that it is –
in which case, this assumption should be made
with full understanding of the possibility of in-
troducing biases.

• missing at random (MAR) – where the miss-
ingness is not random, but where other known
data values fully account for the fact that the
data is missing. For example, suppose that boys
are more likely to refuse an IgE test than girls.
Considering the fact that boys are more likely to
have allergies, this would introduce a bias in our
results, since the missing tests would be more
likely to be positive than the non-missing tests.

When data is MAR, it is possible to correct for
the bias, at least to some extent, by changing
the model appropriately to account for why the
data is missing. This extension requires creat-
ing a new variable in the model for each data
point, which is true if the data point is miss-
ing and false otherwise, and then building a
suitable sub model to explain this new variable.
For example, if boys are more likely than girls
to skip an IgE test, then to correct for bias we

280 CHAPTER 6. UNDERSTANDING ASTHMA

would need to extend our model to represent this
effect, such as by adding a new gender variable
connected to the missingness variable. We would
also need to allow this gender variable to affect
the probability of sensitization in an appropriate
way. The degree to which this approach corrects
the bias introduced by missing data, depends on
how good the model of missingness is. As ever,
a better model will give better results.

• missing not at random (MNAR) – where the
missingness is not either MCAR or MAR. In
this case, the fact that a data point is missing
depends on the value of that data point. For
example, this would occur if children with lots
of allergies were more likely to skip a skin prick
test because of concerns about the discomfort in-
volved in having a positive test. Or such children
might be more used to medical interventions and
so may be less likely to skip a blood test due to
fear of needles.

When data is MNAR, it is not possible to correct
for the bias without making modelling assump-
tions about the nature of the bias (which could
be dangerous as there would be no data to verify
such assumptions). One possible approach would
be to try and collect additional information rel-
evant to why the data is missing, in the hope
that this would now make it missing at random
(MAR).

For our study, we need to find out why the various patterns of missing data
arose. Consulting again with the MAAS team, we find that:

1. The clinicians chose to omit mould tests at age 1, since this is a rare
allergy and there was a desire to minimise the number of tests performed
on babies. Similarly, a decision was made half way through the study to
add in peanut tests.

2. The reduced number of tests at age 1 are due to manpower limitations as
the study was ramped up – not all children could be brought in for testing
by age 1.

3. The greater number of missing IgE tests are due to children not wanting
to give blood, or parents not wanting babies or young children to have
blood taken.

6.2. TRYING OUT THE MODEL 281

For 1, we know why the data is missing - because the clinicians chose not to
do certain tests. Such data can be assumed to be missing completely at random,
since the choice of which tests to perform at each age was made independently
of any test results. For 2, the study team chose whether to invite a child in
for testing by age 1 and so could choose in a way that was not influenced by
the child’s allergies (such as, at random). So again, we could assume such data
to be missing completely at random. For 3, we might be more concerned, as
now it is a decision of the child or the parents that is influencing whether the
test is performed. This is more likely to be affected by the child’s allergies, as
we discussed above, and so it is possible that such missing data is not missing
completely at random. For the sake of simplicity, we will assume that it is –
this is such an important assumption that we should record it:

6 Missing test results are missing completely at random.

Having made this assumption, we should bear in mind that our inference
results may contain biases. One reassuring point is that where we do not have
an IgE test result, we often have a skin test result. This means that we still
have some information about the underlying sensitization state even when an
IgE test result is missing, which is likely to diminish any bias caused by its
missingness.

There is another impact of missing data. Even when missing data is not
introducing bias, if there is a lot of missing data it can lead to uncertainty, in the
form of very broad posterior distributions. For example, at several time points
we have no data for mould or peanut and so the gain/retain probabilities for
those ages would be very uncertain, and so have broad posterior distributions.
When included in results plots, such broad distributions can distract from the
remaining meaningful results. To keep our plots as clear as possible, we will
simply drop the mould and peanut allergens from our data set and consider
only the remaining six allergens.

6.2.2 Some initial results

Having decided to treat our missing data as missing completely at random, we
are now in a position to apply expectation propagation to our model and get
some results. Where we have a missing data point, we simply do not observe
the value of the corresponding random variable.

Having run our inference algorithm, the first posterior distributions we will
look at are those for probSkinIfSens, probSkinIfNotSens, probIgeIfSens

and probIgeIfNotSens. These posteriors are beta distributions, which we can
summarise using a mean plus or minus a value indicating the width of the beta
distribution, as shown in Table 6.3.

282 CHAPTER 6. UNDERSTANDING ASTHMA

If Sensi	zed If Not Sensi	zed

Prob. of Pos. Skin Test 79.0%±0.7% 0.5%±0.04%

Prob. of Pos. IgE Test 93.0%±0.6% 3.7%±0.1%

Table 6.3: The probability of a positive test for each test type and for each
sensitization state. The plus/minus values indicate the uncertainty in the prob-
ability given by the posterior beta distributions. The table shows that the skin
test has a low false positive probability, but also a lower true positive probabil-
ity. Conversely, the IgE test has a higher false positive probability, but a very
high true positive probability. These results show that, taken together, the tests
have complementary strengths and weaknesses.

The results in Table 6.3 show that the two types of test are complementary:
the skin prick test has a very low false positive rate (¡1%) but as a result has
a reduced true positive rate (79%); in contrast, the IgE test has a high true
positive rate (93%) but as a result has a higher false positive rate (4%). The
complementary nature of the two tests show why they are both used together –
each test brings additional information about the underlying sensitization state
of the child. During inference, our model will automatically take these true and
false positive rates into account when inferring the sensitization state at each
time point, so it will gain the advantage of the strengths of both tests, whilst
being able to minimise the weaknesses.

Next let’s look at the inferred probabilities of initially having, gaining and
retaining sensitization for each allergen. Figure 6.7a shows the probability of
initially having a sensitization (age 1) and then the probability of gaining sensi-
tization (ages 3, 5, 8). Similarly, Figure 6.7b shows the probability of retaining
sensitization since the previous time point (for ages 3, 5 and 8 only). Since each
probability has a beta posterior distribution, the charts show the uncertainty
associated with the probability values, using the lower and upper quartiles of
each beta distribution.

6.2. TRYING OUT THE MODEL 283

Age of child

2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

Mite

Cat

Dog

Pollen

Milk

Egg

(a) The probability of having sensitivity (age 1)
or subsequently gaining sensitivity (ages 3, 5 and
8).

Age of child

3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mite

Cat

Dog

Pollen

Milk

Egg

(b) The probability of retaining sensitivity since
the previous time point at ages 3, 5 and 8.

Figure 6.7: Plots showing the probabilities for (a) having/gaining and (b) retaining sensitization for each time
point and allergen.

Looking at Figure 6.7a and Figure 6.7b together, we can see that different
allergens have different patterns of onset and loss of sensitization. For example,
there is a high initial probability of sensitivity to egg but, after that, a very
low probability of gaining sensitivity. Egg also has the lowest probability of
retaining sensitization, meaning that children tend to have egg sensitivity very
early in life and then rapidly lose it. As another example, mite and pollen have
very low initial probabilities of sensitization, but then very high probabilities
of gaining sensitization by age 3. Following sensitization to mite or pollen, the
probability of retaining that sensitization is very high. In other words, children
who gain sensitization to mite or pollen are most likely to do so between ages
1 and 3 and will then likely retain that sensitization (at least to age 8). Cat
and dog have similar patterns of gain and loss to each other, but both have a
higher initial probability of sensitization and a lower peak than mite and pollen.
Milk shows the lowest probabilities of sensitization, meaning that it is a rare
allergy in this cohort of children. As a result, the probability of retaining a milk
sensitization is more uncertain, since it is learned from relatively few children.
This uncertainty is shown by the broad shaded region for milk in Figure 6.7b.

Another way of visualizaing these results, is to look at the inferred sensi-
tizations. We have inferred the posterior probability of each child having a
sensitization to each allergen at each time point. We can then count the num-
ber of children who are more likely to be sensitized than not sensitized (that
is, where the probability is ¿50%). Plotting this count of sensitizations for each
allergen and age gives Figure 6.8.

284 CHAPTER 6. UNDERSTANDING ASTHMA

Allergen

Mite Cat Dog Pollen Milk Egg
0

50

100

150

200

Age 1 Age 3 Age 5 Age 8

Figure 6.8: The number of children with inferred sensitizations for each allergen,
at each point in time.

Figure 6.8 shows the patterns of gaining and losing sensitization in a different
way, by showing the count of sensitized children. The chart shows that egg
allergies start off common and disappear over time. The chart also shows that
mite and pollen allergies start between ages 1 and 3 and the total number of
allergic children only increases with age. In many ways, this chart is easier to
read than the line charts of Figure 6.7a and Figure 6.7b because it looks directly
at the counts of sensitizations rather than at changes in sensitizations. Also,
all the information appears on one chart rather than two. For this reason, we
will use this kind of chart to present results as we evolve the model later in the
chapter.

To summarize, we have built a model that can learn about the patterns of
gaining and losing allergic sensitization. The patterns that we have found apply
to the entire cohort of children – effectively they are patterns for the population
as a whole. What the model does not tell us is whether there are groups of
children within the cohort that have different patterns of allergic sensitization,
which might give rise to different diseases. By looking at all children together,
this information is lost. Reviewing our assumptions, the problematic assumption
is this one:

5 The probabilities relating to initially having, gaining or retaining sensiti-
zation to a particular allergen are the same for all children.

We’d really like to change the assumption to allow children to be in different
groups, where each group of children can have different patterns of sensitization.
Let’s call these groups ‘sensitization classes’. The assumption would then be:

5 The probabilities relating to initially having, gaining or retaining sen-
sitization to a particular allergen are the same for all children in each
sensitization class.

The problem is that we do not know which child is in which sensitization
class. We need a model that can represent alternative processes for gaining and

6.2. TRYING OUT THE MODEL 285

losing sensitization, and which can determine which process took place for each
individual child. In other words, we need to be able to compare alternative
models for each child’s data and determine which is likely to be the one that
gave rise to the data. To achieve this will require some new tools for modelling
and inference, which we will introduce in the next section.

Review of concepts introduced in this section

missing data In a data set, a missing data point is one where no value
is available for a variable in an observation. The reason for the value being
missing is important and can affect the validity of probabilistic inference using
the remaining non-missing values. See subsection 6.2.1.

missing completely at random Where missing data points occur entirely
at random. In other words, the fact that the data is missing is independent of
the value of the missing data point.

missing at random Where missing data points do not occur at random,
but where other known data values fully account for the fact that the data is
missing.

missing not at random Where missing data is neither missing completely
at random (MCAR) not missing at random (MAR). In this case, the fact that
a data point is missing depends on the value of that data point. Where data
is missing not at random, it is very difficult to avoid biases in the results of
inference.

286 CHAPTER 6. UNDERSTANDING ASTHMA

6.3 Comparing alternative models

In all the previous chapters, we have assumed that the data arose from a single
underlying process. But now we can no longer presume this, since we expect
there to be different processes for children who do develop allergies and asthma
and for those who do not. To handle these kinds of alternative processes, we
need to introduce a new modelling technique.

This technique will allow us to:

• Represent multiple alternative processes within a single model;

• Evaluate the probability that each alternative process gave rise to a par-
ticular data item (such as the data for a particular child);

• Compare two or more different models to see which best explains some
data.

To introduce this new technique, we will need to put the asthma project to
one side for now and instead look at a simple example of a two-process scenario
(if you’d prefer to stay focused on the asthma project, skip ahead to section 6.5).
Since we are in the medical domain, there is a perfect two-process scenario
available: the randomised controlled trial. A randomised controlled trial
is a kind of clinical trial commonly used for testing the effectiveness of various
types of medical intervention, such as new drugs. In such a trial, each subject is
randomly assigned into either a treated group (which receives the experimental
intervention) or a control group (which does not receive the intervention). The
purpose of the trial is to determine whether the experiment intervention has an
effect on one or more outcomes of interest, and to understand the nature of that
effect.

The goal of our randomized controlled
trial will be to find out if a new drug is

effective.

Let’s consider a simple trial to test the effective-
ness of a new drug on treating a particular illness.
We will use one outcome of interest – whether the
patient made a full recovery from the illness. In
modelling terms, the purpose of this trial is to de-
termine which of the following two processes oc-
curred:

1. A process where the drug had no effect on
whether the patient recovered.

2. A process where the drug did have an effect
on whether the patient recovered.

To determine which process took place, we need
to build a model of each process and then com-
pare them to see which best fits the data. In
both models, the data is the same: whether or
not each subject recovered. We can attach the

6.3. COMPARING ALTERNATIVE MODELS 287

control grouptreated group

recoveredControlrecoveredTreated

probRecovery

Beta(1,1)

BernoulliBernoulli

Figure 6.9: Factor graph for a process where the experimental drug has no
effect. In this case, the probability of recovery is the same for the treated and
control groups.

data to each model using binary variables which
are true if that subject recovered and false oth-
erwise. We’ll put these binary variables into
two arrays: recoveredControl contains the vari-
ables for each subject in the control group and
recoveredTreated similarly contains the variables
for each subject in the treated group.

Model where the drug had no effect

Let’s start with a model of the first process, where the drug had no effect. In
this case, because the drug had no effect, there is no difference between the
treated group and the control group. So we can use an assumption like this one:

1 The (unknown) probability of recovery is the same for subjects in the
treated and control groups.

It is perfectly possible that a subject could recover from the illness without
any medical intervention (or with a medical intervention that does nothing).
In this model, we assume that the drug has no effect and therefore all recov-
eries are of this kind. We do not know what the probability of such a spon-
taneous recovery is and so we can introduce a random variable probRecovery

to represent it, with a uniform Beta(1,1) prior. Then for each variable in the
recoveredControl and recoveredTreated arrays, we assume that they were
drawn from a Bernoulli distribution whose parameter is probRecovery. The
resulting model is shown as a factor graph in Figure 6.9 – for a refresher on
Beta-Bernoulli models like this one, take a look back at chapter 2.

288 CHAPTER 6. UNDERSTANDING ASTHMA

control grouptreated group

recoveredControlrecoveredTreated

probControlprobTreated

Beta(1,1)

Bernoulli

Beta(1,1)

Bernoulli

Figure 6.10: Factor graph for a process where the experimental drug does have
an effect, and so the probability of recovery is different for the treated group
and for the control group.

Model where the drug did have an effect

Now let’s turn to the second process, where the drug did have an effect on
whether the patient recovered. In this case, we need to assume that there is a
different probability of recovery for the treated group and for the control group.
We hope that there is a higher probability of recovery for the treated group,
but we are not going to assume this. We are only going to assume that the
probability of recovery changes if the drug is taken.

2 The probability of recovery is different for subjects in the treated group
and for subjects in the control group.

To encode this assumption in a factor graph, we need two variables: probTreated
which is the probability of recovery for subjects who were given the drug and
probControl which is the probability of recovery for subjects in the control
group who were not given the drug. Once again, we choose uniform Beta(1,1)
priors over each of these variables. Then for each variable in the recoveredControl
array we assume that they were drawn from a Bernoulli distribution whose pa-
rameter is probControl. Conversely, for each variable in the recoveredTreated
array we assume that they were drawn from a Bernoulli distribution whose pa-
rameter is probTreated. The resulting model is shown in Figure 6.10.

Compare the models of the two different processes given in Figure 6.9 and
Figure 6.10. You can see that the factor graphs are pretty similar. The only
difference is that the ‘no effect’ model has a single shared probability of recovery
whilst the ‘has effect’ model has different probabilities of recovery for the treated
and control groups.

Selecting between the two models

We now need to decide which of these two models gave rise to the actual out-
comes measured in the trial. The task of choosing which of several models best
fits a particular data set is called model selection. In model-based machine

6.3. COMPARING ALTERNATIVE MODELS 289

learning, if we want to know the value of an unknown quantity, we introduce
a random variable for that quantity and infer a posterior distribution over the
value of the variable. We can use exactly this approach to do model selection.
Let’s consider a random variable called model which has two possible values
NoEffect if the ‘no effect’ model gave rise to the data and HasEffect if the
’has effect’ model gave rise to the data. Notice the implicit assumption here:

3 Either the ‘no effect’ model or the ‘has effect’ model gave rise to the data.
No other model will be considered.

For brevity, let’s use data to refer to all our observed data, in other words,
the two arrays recoveredTreated and recoveredControl. We can then use
Bayes’ rule (Panel 1.1) to infer a posterior distribution over model given the
data.

P (model|data) =
P (model)P (data|model)

P (data)
. (6.1)

Models can be compared using model
evidence, in a process called Bayesian

model selection.

Unsurprisingly, this technique of using Bayes’s
rule to do model selection is called Bayesian
model selection. In equation (6.1), the left hand
side is the posterior distribution over models that
we want to compute. On the right hand side,
P (model) encodes our prior belief about which
model is more probable – usually, this prior is cho-
sen to be uniform so as not to favour any one
model over another. Also on the right hand side,
P (data|model) gives the probability of the data
conditioned on the choice of model. This is the
data-dependent term that varies from model to model and so provides the evi-
dence for or against each model. For this reason, this quantity is known as the
model evidence or sometimes just as the evidence.

With a uniform prior over models, the result is that the posterior distribution
over model is equal to the model evidence values normalised to add up to 1. In
other words, the posterior probability of a model is proportional to the model
evidence for that model. For this reason, when comparing two models, it is
common to look at the ratio of their model evidences – a quantity known as a
Bayes factor. For example, the Bayes factor comparing the ‘has effect’ model
evidence to the ‘no effect’ model evidence is:

Bayes factor =
P (data|model = HasEffect)

P (data|model = NoEffect)
(6.2)

The higher the Bayes factor, the stronger the evidence that the top model
(in this case the ’has effect’ model) is a better model than the bottom model
(the ’no effect’ model). For example, Kass and Raftery [1995] suggest that a
Bayes factor between 3-20 is positive evidence for the top model, a Bayes factor
between 20-150 is strong evidence, and a Bayes factor above 150 is very strong
evidence. However, it is important to bear in mind that this evidence is only

290 CHAPTER 6. UNDERSTANDING ASTHMA

relative evidence that the top model is better than the bottom one – it is not
evidence that this is the true model of the data or even that it is a good model
of the data.

You might worry that the ‘has effect’ model will always be favoured over the
‘no effect’ model, because the ‘has effect’ model includes the ‘no effect’ model
as a special case (when probTreated is equal to probControl). This means
that the ‘has effect’ model can always fit any data generated by the ‘no effect’
model. So, even if the drug has no effect, the ‘has effect’ model will still fit the
data well. As we will see when we start computing Bayes factors, if the drug
has no effect the Bayes factor will correctly favour the ‘no effect’ model.

So why is the ‘no effect’ model favoured in this case? It is because of a princi-
ple known as Occam’s razor (named after William of Ockham who popularized
it) which can be expressed as “where multiple explanations fit equally well with
a set of observations, favour the simplest”. Bayesian model selection applies
Occam’s razor automatically by favouring simple models (generally those with
fewer variables) over complex ones. This arises because a more complex model
can generate more different data sets than a simpler model, and so will place
lower probability on any particular data set. It follows that, where a data set
could have been generated by either model, it will have higher probability under
the simpler model – and so a higher model evidence. We will see this effect in
action in the next section, where we show how to compute model evidences and
Bayes factors for different trial outcomes.

6.3.1 Comparing the two models using Bayesian model
selection

Inference

Inference deep-dive
In this optional section, we show the inference calculations needed to do Bayesian
model selection for the two models we just described. If you want to focus on
modelling, feel free to skip this section.

Next we can look at how to perform Bayesian model selection between the
two models in our randomised controlled trial. As an example, we will consider
a trial with 40 people: 20 in the control group and 20 in the treated group. In
this example trial, we found that 13 out of 20 people recovered in the treated
group compared to just 8 out of 20 in the control group. To do model selection
for this trial, we will need to compute the model evidence for each of our two
models.

Computing the evidence for the ‘no effect’ model

Let’s first compute the evidence for the ‘no effect’ model, which is given by
P (data|model = NoEffect). Remembering that data refers to the two arrays
recoveredTreated and recoveredControl, we can write this more precisely as
P (recoveredTreated, recoveredControl|model = NoEffect).

If we write down the joint probability for the ‘no effect’ model, it looks like

https://en.wikipedia.org/wiki/William_of_Ockham

6.3. COMPARING ALTERNATIVE MODELS 291

this:

P (recoveredTreated,recoveredControl, probRecovery|model = NoEffect)

= Beta(probRecovery; 1, 1)

×
∏

i∈treated

Bernoulli(recoveredTreated[i]|probRecovery)

×
∏

i∈control

Bernoulli(recoveredControl[i]|probRecovery)

(6.3)

In equation (6.3), the notation
∏
i∈treated means a product of all the contained

terms where i varies over all the people in the treated group. Notice that there
is a term in the joint probability for each factor in the factor graph of Figure 6.9,
as we learned back in section 2.1. Also notice that when working with multiple
models, we write the joint probability conditioned on the choice of model, in
this case model = NoEffect. This conditioning makes it clear which model we
are writing the joint probability for.

We can simplify this joint probability quite a bit. First, we can note that
Beta(probRecovery; 1, 1) is a uniform distribution and so we can remove it
(because multiplying by a uniform distribution has no effect). Second, we can
use the fact that recoveredTreated and recoveredControl are both observed
variables, so we can replace the Bernoulli terms by probRecovery for each
subject that recovered and by (1−probRecovery) for each subject that did not
recover. It is helpful at this point to define some counts of subjects. Let’s call
the number of treated group subjects that recovered TT and the number which
did not recover TF . Similarly, let’s call the number of control group subjects
that recovered CT and the number which did not recover CF .

P (recoveredTreated, recoveredControl, probRecovery|model = NoEffect)

= probRecoveryTT (1− probRecovery)TF × probRecoveryCT (1− probRecovery)CF

= probRecovery(TT+CT)(1− probRecovery)(TF+CF) (6.4)

This joint probability P (recoveredTreated, recoveredControl, probRecovery|model =
NoEffect) is quite similar to the model evidence that we are trying to compute
P (recoveredTreated, recoveredControl|model = NoEffect). The difference
is that the joint probability includes the probRecovery variable. In order to
compute the model evidence, we need to remove this variable by marginalising
(integrating) it out.

P (recoveredTreated, recoveredControl|model = NoEffect)

=

∫
P (recoveredTreated, recoveredControl, probRecovery|model = NoEffect) dprobRecovery

=

∫
probRecovery(TT+CT)(1− probRecovery)(TF+CF) dprobRecovery

(6.5)

292 CHAPTER 6. UNDERSTANDING ASTHMA

To evaluate this integral, we can compare it to the probability density func-
tion of the beta distribution, that we introduced back in equation (2.18):

Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(6.6)

We know that the integral of this density function is 1, because the area under
any probability density function must be 1. Our model evidence in equation
(6.5) looks like the integral of a beta distribution with α = TT + CT + 1 and
β = TF + CF + 1, except that it is not being divided by the normalising beta
function B(α, β). If we did divide by B(α, β), the integral would be 1. Since
we are not, the integral must equal B(α, β) for the above values of α and β. In
other words, the model evidence is equal to B(TT + CT + 1, TF + CF + 1).

For the counts in our example, this model evidence is B(13+8+1, 7+12+1),
which equals B(22, 20).

Computing the evidence for the ‘has effect’ model

The computation of the model evidence for the ‘has effect’ model is actually
quite similar. Again, we write down the joint distribution

P (recoveredTreated,recoveredControl, probTreated, probControl|model = HasEffect)

= Beta(probTreated; 1, 1)

× Beta(probControl; 1, 1)

×
∏

i∈treated

Bernoulli(recoveredTreated[i]|probTreated)

×
∏

i∈control

Bernoulli(recoveredControl[i]|probControl)

(6.7)

We now condition the joint distribution on model = HasEffect, which shows
that this is the joint distribution for the ‘has effect’ model. We can simplify
this expression by removing the uniform beta distributions and again using the
counts of recovered/not recovered subjects in each group:

P (recoveredTreated, recoveredControl, probTreated, probControl|model = HasEffect)

= probTreatedTT (1− probTreated)TF × probControlCT (1− probControl)CF

(6.8)

Notice that in this model we have two extra variables that we need to get
rid of by marginalisation: probTreated and probControl. To integrate this
expression over these extra variables, we can use the same trick as before ex-
cept that now we have two beta densities: one over probTreated and one over
probControl. The resulting model evidence is:

P (recoveredTreated,recoveredControl|model = HasEffect)

= B(TT + 1, TF + 1)× B(CT + 1, CF + 1) (6.9)

6.3. COMPARING ALTERNATIVE MODELS 293

For the counts in our example, this model evidence is B(13 + 1, 7 + 1)B(8 +
1, 12 + 1), which simplifies to B(14, 8)B(9, 13).

Computing the Bayes factor for the ‘has effect’ model over the ‘no
effect’ model

We now have the model evidence for each of our two models:

• P (data|model = NoEffect) = B(TT + CT + 1, TF + CF + 1)

• P (data|model = HasEffect) = B(TT + 1, TF + 1)× B(CT + 1, CF + 1)

These model evidence values can be plugged into equation (6.1) to compute
a posterior distribution over the model variable.

Let’s compute the Bayes factor for our example trial, where 8/20 of the
control group recovered, compared to 13/20 of the treated group:

Bayes factor =
P (model)P (data|model)

P (data)
=

B(14, 8)B(9, 13)

B(22, 20)
= 1.25 (6.10)

A Bayes factor of just 1.25 shows that the ’has effect’ model is very slightly
favoured over the ’no effect’ model but that the evidence is very weak. Note
that this does not mean that the drug has no effect, but that we have not yet
shown reliably that it does have an effect. The root problem is that the trial
is just too small to provide strong evidence for the effect of the drug. We’ll
explore the effect on the Bayes factor of increasing the size of the trial in the
next section.

Earlier, we claimed that the Bayes factor will correctly favour the ‘no effect’
model in the case where the drug really has no effect. To prove this, let’s
consider a trial where the drug does indeed have no effect, which leads to an
outcome of 8/20 recovering in both the control and treated groups. In this case,
the Bayes factor is given by:

Bayes factor =
P (model)P (data|model)

P (data)
=

B(9, 13)B(9, 13)

B(17, 25)
= 0.37 (6.11)

Now we have a Bayes factor of less than 1 which means that the ‘no effect’
model has been favoured over the ‘has effect’ model, despite them both fitting
the data equally well. This tendency of Bayesian model selection to favour
simpler models is crucial to selecting the correct model in real applications. As
this example shows, without it, we would not be able to tell that a drug doesn’t
work!

The model evidence calculations we have just seen have a familiar form. We
introduced a random variable called model and then used Bayes’ rule to in-
fer the posterior distribution over that random variable. However, the random
variable model did not appear in any factor graph and we manually computed
its posterior distribution, rather than using a general-purpose message passing
algorithm. It would be simpler, easier and more consistent if the posterior dis-
tribution could be calculated by defining a model containing the model variable

294 CHAPTER 6. UNDERSTANDING ASTHMA

and running a standard inference algorithm on that model. In the next section,
we show that this can be achieved using a modelling structure called a gate.

Review of concepts introduced in this section

randomised controlled trial A randomised controlled trial is a kind of clin-
ical trial commonly used for testing the effectiveness of various types of medical
intervention, such as new drugs. In such a trial, each subject is randomly as-
signed into either a treated group (which receives the experimental intervention)
or a control group (which does not receive the intervention). The purpose of
the trial is to determine whether the experimental intervention has an effect or
not on one or more outcomes of interest, and to understand the nature of that
effect.

model selection The task of choosing which of several models best fits a
particular data set. Model selection is helpful not only because it allows the
best model to be used, but also because identifying the best model helps to
understand the processes that gave rise to the data set.

Bayesian model selection The process of doing model selection by comput-
ing a posterior distribution over the choice of model conditioned on a given data
set. Rather than given a single ‘best’ model, Bayesian model selection returns
a probability for each model and the relative size of these probabilities can be
used to assess the relative quality of fit of each model.

model evidence The probability of the data conditioned on the choice of
model, in other words P (data|model). This conditional probability provides
evidence for or against each model being the one that gave rise to the data set,
thus the name ‘model evidence’. Comparing model evidence values for different
models allows for Bayesian model selection. Because it is a frequently used
concept, model evidence is often called just the ‘evidence’.

Bayes factor The ratio of the model evidence for a particular model of interest
to the model evidence for another model, usually a baseline or ‘null’ model. The
higher the Bayes factor, the greater the support for the proposed model relative
to the a baseline model.

Occam’s razor Where multiple explanations fit equally well with a set of
observations, favour the simplest. It is named after William of Ockham who
used it in his philosophical arguments. He did not invent the concept, however,
there are references to it as early as Aristotle (384-322 BC).

https://en.wikipedia.org/wiki/William_of_Ockham

6.4. MODELLING WITH GATES 295

6.4 Modelling with gates

A gate allows part of a
factor graph to be turned

on or off.

In the previous section, we saw how to compare alternative pro-
cesses by manually inferring the posterior distribution over a
random variable that selects between them. What we will now
see is how to do the same calculation by defining an appropriate
model and performing inference within that model. To do this,
we need a new modelling structure that allows alternatives to
be represented within a model. The modelling structure that we
can use to do this is called a gate, as described in Minka and
Winn [2009].

A gate encloses part of a factor graph and switches it on
or off depending on the state of a random variable called the
selector variable. The gate is on when the selector variable has
a particular value, called the key, and off for all other values. An
example gate is shown in the factor graph of Figure 6.11. The
gate is shown as a dashed rectangle with the key value (true)
in the top left corner. The selector variable selector has an edge connecting
it to the gate – the arrow on the edge shows that the gate is considered to be a
child of the selector variable. When selector equals true, the gate is on and
so x has a Bernoulli(0.2) distribution. Otherwise, the gate is off and x has a
uniform distribution, since it is not connected to any factors.

True

selector

x

Bernoulli(0.2)

Figure 6.11: An example of a factor graph which contains a gate, shown as
a dashed rectangle. When selector equals the key value true (shown in the
top left of the gate), the gate is on and the variable x has a Bernoulli(0.2)
distribution. When selector is false, the gate is off and x has a uniform
distribution since it is not connected to any factors.

When writing the joint distribution for a factor graph with a gate, all terms
relating to the part of the graph inside the gate need to be switched on or off
according to whether the selector variable takes the key value or not. Such
terms can be turned off by raising them to the power zero and left turned on by
raising to the power one. For example, the joint distribution for Figure 6.11 is

P (selector, x) ∝ Bernoulli(x; 0.2)δ(selector=true) (6.12)

where the function δ() equals one if the expression in brackets is true and zero

296 CHAPTER 6. UNDERSTANDING ASTHMA

True False

selector

x

Bernoulli(0.2) Bernoulli(0.9)

Figure 6.12: An example of a factor graph which contains a gate block. When
selector equals true, the left gate is on and the right gate is off and so x has
a Bernoulli(0.2) distribution. When selector equals false, the left gate is off
and the right gate is on and so x has a Bernoulli(0.9) distribution.

otherwise. If selector is not true the Bernoulli(x; 0.2) term will be raised to
the power zero, making the term equal to one – equivalent to removing it from
the product (i.e. turning it off).

When using gates inside a model, it is common to have a gate for each value
of the selector variable. In this case, the resulting set of gates is called a gate
block. Because the selector variable can only have one value, only one gate in
a gate block can be on at once. An example gate block is shown in the factor
graph of Figure 6.12. In this example, the selector variable is binary and so
there are two gates in the gate block, one with the key value true and one
with the key value false. It is also possible to have selector variables with any
number of values, leading to gate blocks containing the corresponding number
of gates.

The joint probability distribution for this factor graph is

P (selector, x) ∝ Bernoulli(x; 0.2)δ(selector=true) Bernoulli(x; 0.9)δ(selector=false).
(6.13)

Looking at this joint probability, you might be able to spot that the gate block
between selector and x represents a conditional probability table, like so:

selector x=true x=false

true 0.200 0.800

false 0.900 0.100

Table 6.4: The conditional probability table represented by the gate block in
Figure 6.12.

As another example, we can represent the conditional probability table for
the skin test (Figure 6.1) using gates like this:

Representing this conditional probability table using a gate block is less com-
pact than using a Table factor (as we did in Figure 6.1) but has the advantage
of making the relationship between the parent variable and child variable more

6.4. MODELLING WITH GATES 297

True False

sensitized

skinTest

probSkinIfSens probSkinIfNotSens

Bernoulli Bernoulli

Figure 6.13: The conditional probability table for the skin test (Figure 6.1)
represented using a gate block. If sensitized is true, the left hand gate is
on and the right hand gate is off. The skin test result skinTest then has a
Bernoulli distribution with the probability of true given by probSkinIfSens.
If sensitized is false, then skinTest has a Bernoulli distribution with the
probability of true given by probSkinIfNotSens.

clear and precise. When a variable has multiple parents, using a gate block to
represent a conditional probability table can also lead to more accurate or more
efficient inference.

6.4.1 Using gates for model selection

Representing a conditional probability table is just the start of what can be
achieved using gates. For example, they can also be used to do model selection.
To see how, let’s return to our model selection problem from the previous section.
Remember that we wanted to select between a ‘has effect’ model and a ‘no effect’
model, by inferring the posterior distribution of a random variable called model.
Using gates, we can represent this model selection problem as a single large
factor graph, using a gate block where the selector variable is model. We then
place the entire ‘no effect’ model inside a gate whose key value is NoEffect and
the entire ‘has effect’ model inside the other gate of the block whose key value is
HasEffect. The observed variables are left outside of both gates because they
are common to both models and so are always on. The result is the factor graph
in Figure 6.14.

This factor graph may look a bit scary, but it can be interpreted in pieces.
The top gate contains exactly the model from Figure 6.10 with the observed
variables outside the gate. The bottom gate contains exactly the model from
Figure 6.9 drawn upside down and sharing the same observed variables. Finally
we have one new variable which is our model variable used to do model selection.

Given this factor graph, we just need to run expectation propagation to infer
the posterior distribution over model. Right? Well, almost – it turns out that
first we need to make some extensions to expectation propagation to be able
to handle gates. The good news is that these modifications allow expectation

298 CHAPTER 6. UNDERSTANDING ASTHMA

HasEffect

control grouptreated group

NoEffect

recoveredControlrecoveredTreated

model

probControlprobTreated

probRecovery

Bernoulli(0.5)

Beta(1,1)

Bernoulli

Beta(1,1)

Bernoulli

Beta(1,1)

BernoulliBernoulli

Figure 6.14: A factor graph which uses gates to do model selection between two
models. The ‘has effect’ model is in the top gate and the ‘no effect’ mode is in
the bottom gate. The observed data variables lie outside both gates, since they
are common to both models. When the selector variable model has the value
HasEffect the top gate is on and the bottom gate is off and so the ‘has effect’
model applies. When the selector variable model has the value NoEffect the
top gate is off and the bottom gate is on and so the ‘no effect’ model applies.
Because model is a random variable with unknown value, inferring its posterior
distribution is equivalent to doing Bayesian model selection between the two
models.

propagation to be applied to any factor graph containing gates.

6.4.2 Expectation propagation in factor graphs with gates
Inference

Inference deep-dive
In this optional section, we see how to use expectation propagation to compute
model evidence and then how to extend expectation propagation to work on
graphs containing gates. If you want to focus on modelling, feel free to skip this
section.

6.4. MODELLING WITH GATES 299

To run expectation propagation in a factor graph which contains gates, we
first need to be able to compute the model evidence for a factor graph with-
out gates. It turns out that we can compute an approximation to the model
evidence by using existing EP messages to compute evidence contributions for
each variable and factor individually, and then multiplying them together. For
example, the evidence contribution for a variable x is given by:

evidencex =
∑
x

product of all messages into x (6.14)

This equation states that to compute the evidence for a variable x, first take the
product of all incoming messages on edges connected to the variable, then sum
the result over the values that x can take (this is what the notation

∑
x means).

Because of this sum the result is a single number rather than a distribution –
this number is the local contribution to the model evidence.

The evidence contribution for a factor f connected to multiple variables Y is
given by:

evidencef =

∑
Y f(Y)× product of all messages into f∑
Y product of all messages into or out of f

(6.15)

In this equation, the notation
∑
Y means the sum over all joint configurations

of the connected variables Y.
We can use equations (6.14) and (6.15) to calculate evidence contributions

for every variable and factor in the factor graph. The product of all these
contributions gives the EP approximation to the model evidence. For a model
M, this gives:

evidenceM =
∏

x in M

evidencex ×
∏

f in M

evidencef (6.16)

In equation (6.16), the first team means the product of the evidence contribu-
tions from every variable in model M and the second term means the product of
evidence contributions from every factor in model M.

Adding in gates

If we now turn to factor graphs which contains gates, there is a new kind of
evidence contribution that comes from any edge that crosses over a gate bound-
ary. If such an edge connects a variable x to a factor f , then the evidence
contribution is:

evidencefx =
∑
x

message from x to f ×message from f to x (6.17)

In other words, we take the product of the two messages passing in each direction
over the edge and then sum the result over the values of the variable x.

The advantage of computing evidence contributions locally on parts of the
factor graph is that, as well as computing evidence for the model as a whole, we

300 CHAPTER 6. UNDERSTANDING ASTHMA

can also compute evidence for any particular gate. The evidence for a gate is
the product of the evidence contributions for all variables and factors inside the
gate, along with the contributions from any edges crossing the gate boundary.
For a gate g , this product is given by:

evidenceg =
∏
x in g

evidencex ×
∏
f in g

evidencef ×
∏

fx crossing g

evidencefx (6.18)

If there are no edges crossing the gate boundary – in other words, the gate
contains an entire model disconnected from the rest of the graph – then this
equation reduces to the model evidence equation (6.16) above, and so gives the
evidence for the contained model.

Given these evidence contributions, we can now define an extended version of
expectation propagation which works for factor graphs that contain gates. The
algorithm requires that gates only occur in gate blocks and that any variable
connecting to a factor in one gate of a gate block, also connects to factors in
all other gates of the gate block. This ‘gate balancing’ can be achieved by
connecting the variable to uniform factors in any gate where it does not already
connect to a factor. We need this gate balancing because messages will be
defined as going to or from gate blocks, rather than to or from individual gates.

When sending messages from a factor f inside a gate g to a variable x

outside the gate, we will need to weight the message appropriately, using a
weight defined as:

weightgfx =
evidenceg
evidencefx

×message from the selector variable[key] (6.19)

where the notation [key] indicates that we are evaluating the probability of the
gate’s key value under the distribution given by the message from the selector
variable. Using these weights, we can define our extended expectation propaga-

6.4. MODELLING WITH GATES 301

tion algorithm as shown in algorithm 6.1.

Algorithm 6.1: Expectation Propagation with Gates

Input: factor graph with gate blocks, list of target variables to compute
marginals for, message-passing schedule, initial message values
(optional), choice of approximating distributions for each edge.

Output: marginal distributions for target variables.

Initialise all messages to uniform (or initial values, if provided).
repeat

foreach edge in the message-passing schedule do
Send the appropriate message below:
- Selector variable to gate block: the product of all messages
received on the other edges connected to the selector variable;
- Gate block to selector variable: a distribution over the selector
variable where the probability of each value is proportional to the
evidence for the gate with that key value;
- Factors in gate block to variable outside gate block: Compute
weighted sum of messages from the factor in each gate using
weights given by (6.19). Multiply by the context message (the
message coming from the variable to the gate block). Project into
the desired distribution type using moment matching. Divide out
the context message.
- All other messages: the normal EP message (defined in
algorithm 3.1);

end

until all messages have converged
Compute marginal distributions as the product of all incoming messages
at each target variable node.

The full derivation of this algorithm is given in Minka and Winn [2009],
along with some additional details that we have omitted here (such as how to
handle nested gates).

Now that we have a general-purpose inference algorithm for gated graphs, we
can use it to do Bayesian model selection and to infer posterior distributions over
variables of interest, both at the same time! For example, recall the example
trial from section 6.3. In this trial, 13 out of 20 people in the treated group
recovered compared to 8 out of 20 in the control group. Attaching this data
to the gated factor graph of Figure 6.14, we can apply expectation propagation
to compute posteriors over the model selection variable model and also over
other variables such as probTreated and probControl. The results are shown
in Figure 6.15.

302 CHAPTER 6. UNDERSTANDING ASTHMA

x

0 0.2 0.4 0.6 0.8 1
0

1

2

3

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

Figure 6.15: Inferred posterior distributions for the example trial with 20
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior dis-
tribution over the model variable.

Figure 6.15 shows that the posterior distribution over model puts slightly
higher probability on the ‘has effect’ model than on the ’no effect’ model. The
exact values are 0.5555 for model=HasEffect and 0.4445 for model=NoEffect.
The ratio of these probabilities is the Bayes factor, which in this case is 1.25.
This is the same value that we computed manually in section 6.3, showing that
for this model the expectation propagation posterior is exact. The posterior
distributions over probControl and probTreated give an indication of why the
Bayes factor is so small. The plots show that there is a lot of overlap between
the two distributions, meaning that is possible that both probabilities are the
same value, in other words, that the ’no effect’ model applies.

Let’s see what happens when we increase the size of the trial, but leave the
proportions of people who recovered the same in each group. For a trial of
three times the size, this would see 39 out of 60 recovered in the treated group
compared to 24 out of 60 in the control group. Plugging this new data into our
model, gives the results shown in Figure 6.16.

6.4. MODELLING WITH GATES 303

x

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

Figure 6.16: Inferred posterior distributions for the example trial with 60
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior dis-
tribution over the model variable.

Figure 6.16 shows that, after tripling the size of the trial, the ‘has effect’
model has a much higher probability of 0.904, giving a Bayes factor of 9.41.
Since this factor lies in the range 3-20, the outcome of this trial can now be
considered positive evidence in favour of the ‘has effect’ model. The posterior
distributions over probControl and probTreated shows why the Bayes factor
is now much larger: the two curves have much less overlap, meaning that the
chances of the two probabilities being the same is much reduced. We can take
this further and increase the trial size again so that it is five times the size of
the original trial. In this larger trial, 65 out of 100 recovered in the treated
group compared to 40 out of 100 in the control group, giving the results shown
in Figure 6.17.

304 CHAPTER 6. UNDERSTANDING ASTHMA

x

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

p(probControl)

p(probTreated)

NoEffect HasEffect
0

0.2

0.4

0.6

0.8

1

Figure 6.17: Inferred posterior distributions for the example trial with 100
people in each group. The left plot shows posteriors over probControl and
probTreated in the HasEffect model. The right plot shows the posterior dis-
tribution over the model variable.

In Figure 6.17, the posterior distributions over probControl and probTreated

hardly overlap at all. As a result, the ‘has effect’ model now has a probability
of 0.989, giving a Bayes factor of 92.4. Since this factor lies in the range 20-150,
the outcome of this trial can now be considered strong evidence in favour of the
‘has effect’ model. These results show the importance of running a large enough
clinical trial if you want to prove the effectiveness of your new drug!

Now that we understand how gates can be used to model alternatives in our
randomised controlled trial model, we are ready to use gates to model alternative
sensitization classes in our allergy model, as we will see in the next section.

Review of concepts introduced in this section

gate A container in a factor graph that allows the contained piece of the graph
to be turned on or off, according to the value of another random variable in the
graph (known as the selector variable). Gates can be used to create alternatives

6.4. MODELLING WITH GATES 305

within a model and also to do model selection. More details of gates can be
found in Minka and Winn [2009] or in the expanded version Minka and Winn
[2008].

selector variable A random variable that controls whether a gate is on or
off. The gate will specify a particular key value – when the selector variable has
that value then the gate is on; for any other value it is off. For an example of a
selector variable, see Figure 6.11.

gate block A set of gates each with a different key value corresponding to the
possible values of a selector variable. For any value of the selector variable, one
gate in the gate block will be on and all the other gates will be off. An example
gate block is shown in the factor graph of Figure 6.12.

306 CHAPTER 6. UNDERSTANDING ASTHMA

6.5 Discovering sensitization classes

Now that we have gates in our modelling toolbox, we can extend our allergy
model so that different children can have different patterns of allergy gain and
loss. As you may recall from section 6.2, the model change that we want to
make is to encode this modified assumption:

5 The probabilities relating to initially having, gaining or retaining sen-
sitization to a particular allergen are the same for all children in each
sensitization class.

This assumption requires that each child belongs to some sensitization class,
but we do not know which class each child belongs to. We can represent this
unknown class membership using a sensClass random variable for each child,
which takes a value in 0, 1, 2, . . . depending on whether the child is in class 0,
class 1 and so on. Because this variable can take more than two values, we cannot
use a Bernoulli distribution to represent its uncertain value. Instead we need a
discrete distribution, which is a generalisation of a Bernoulli distribution to
variables with more than two values.

Our aim is to do unsupervised learning of this sensClass variable – in other
words, we want to learn which class each child is in, even though we have no
idea what the classes are and we have no labelled examples of which child is
in which class. Grouping data items together using unsupervised learning is
sometimes called clustering. The term clustering can be misleading, because
it suggests that data items naturally sit together in unique clusters and we just
need to use machine learning to reveal these clusters. Instead, data items can
usually be grouped together in many different ways, and we choose a particular
kind of grouping to meet the needs of our application. For example, in this
asthma project, we want to group together children that have similar patterns
of allergic sensitization. But for another project, we could group those same
children in a different way, such as by their genetics, by their physiology and so
on. For this reason, we will avoid using the terms ‘clustering’ and ‘clusters’ and
use the more precise term ‘sensitization class’.

Each sensitization class needs to have its own patterns of gaining and los-
ing allergic sensitizations, with the corresponding probabilities for gaining and
losing sensitizations at each time point. For example, each class should have
its own value of probSens1 which gives the probability of sensitization at age 1
for children in that particular sensitization class. To achieve this in our model,
we need the sensitization state at age 1 (sensitized1) to be connected to the
appropriate probSens1 corresponding to the sensitization class of the child. We
can achieve this by replicating the connecting Bernoulli factor for each sensiti-
zation class, and then using a gate block to ensure that only one of these factors
is turned on, as shown in Figure 6.18.

In Figure 6.18, we have assumed that there are four sensitization classes and
duplicated probSens1 into separate probabilities for each class (probSens10,
probSens11 . . .). There is a gate for each class, keyed by the number of the

6.5. DISCOVERING SENSITIZATION CLASSES 307

0 1 2 3

probSens1_0 probSens1_1 probSens1_2 probSens1_3 sensClass

sensitized1

Beta(1,1) Beta(1,1) Beta(1,1) Beta(1,1)

Bernoulli Bernoulli Bernoulli Bernoulli

Figure 6.18: A factor graph with four different probabilities of sensitization at
age 1, where the appropriate probability is selected according to the value of
the sensClass variable (0, 1, 2 or 3). For any value of sensClass, one gate is
on and all other gates are off.

c : classes

c

sensClass

sensitized1

probSens1

Beta(1,1)

Bernoulli

Figure 6.19: The same model as Figure 6.18, shown more compactly by using
a plate across sensitization classes. The initial sensitization probabilities, gates
and corresponding factors are duplicated for each sensitization class.

class (0,1,2 or 3). Because each key is different, any value of sensClass leads
to one gate being on and all the other gates being off. In this way, the value
of sensClass determines which of the four initial sensitization probabilities to
use.

The factor graph of Figure 6.18 is quite cluttered because of the repeated
factors and variables for each sensitization class. We can represent the same
model more compactly if we introduce a plate across the sensitization classes
and put the repeated elements inside the plate, as shown in Figure 6.19.

308 CHAPTER 6. UNDERSTANDING ASTHMA

children

allergens

classes

c : classes

c

c : classes

c

c : classes

c

c : classes

c

skinTest1

igeTest1

skinTest3

igeTest3

skinTest5

igeTest5

skinTest8

igeTest8

sensClass

probSens1 probGain3 probRetain3 probGain5 probRetain5 probGain8 probRetain8

sensitized1 sensitized3 sensitized5 sensitized8

Uniform

Bernoulli Table Table Table

Table

Table

Table

Table

Table

Table

Table

Table

Figure 6.20: Modified factor graph which has different probabilities of having, gaining and retaining sensitization
for each sensitization class. The random variables for these probabilities are duplicated by a classes plate at
the top of the factor graph. These probabilities are then connected into the rest of the model by factors each
contained in a gate and a plate. The sensClass variable is connected to all gates and switches between the
different sets of probabilities, according to the sensitization class of the child. In this figure, the probability
variables relating to skin and IgE tests have been omitted for clarity.

Using the compact notation of Figure 6.19, we can modify our allergy model
of Figure 6.5 to have different probabilities for each sensitization class. We take
all our probability variables probSens1, probGain3 and so on, and duplicate
them across classes using a plate. We then place each factor in the Markov
chain inside a gate and plate, where the gates are all connected to a sensClass

selector variable. Finally, we choose a uniform prior over sensClass, giving the
factor graph of Figure 6.20.

6.5.1 Testing the model with two classes

To test out our model in its simplest form, we can set the number of sensitiza-
tion classes to two. With just two classes, we would expect the model to divide
the children into a group which have no sensitizations and a second group that
contains those children with sensitizations. However, when we run expectation
propagation in the model, we get an unexpected result. The posterior distribu-
tions over the sensitization class are all uniform, for every child! In addition,
when we look at the learned probabilities of gaining/retaining sensitizations,
they are also all the same for each class – and look just like the one-class prob-
abilities shown in Figure 6.7. What has happened here?

6.5. DISCOVERING SENSITIZATION CLASSES 309

The issue is that our model defines every sensitization class in exactly the
same way – each class has the same set of variables which all have exactly the
same priors. We could reorder the sensitization classes in any order and the
model would be unchanged. This self-similarity is a symmetry of the model,
very similar to the symmetry we encountered in section 5.3 in the previous
chapter. During inference, this symmetry causes problems because the posterior
distributions will not favour any particular ordering of classes and so will end
up giving an average of all classes – in other words, the same results as the
one-class model. Not helpful!

As in the previous chapter, we need to apply some kind of symmetry break-
ing to get useful inference results. In this case, we can break symmetry by
providing initial messages to our model, such that the messages differ from
class to class. A simple approach is to provide an initial message into each
sensClass variable which is a point mass at a randomly selected value. The
effect of these initial messages is to randomly assign children to sensitization
classes for the first iteration of expectation propagation. This randomization
affects the messages going to the class-specific variables (such as probSens1) in
the first iteration, which in turn means that the messages to each sensClass

variable are non-uniform in the next iteration and so on. The end result is that
the class-specific variables eventually converge to describe different underlying
sensitization classes and the sensClass variables converge to assign children to
these different classes.

With symmetry breaking in place, we can now run inference successfully in
a two-class model. We can visualize the results using a chart like Figure 6.8
for each class. To do this, we assign each child to the sensitization class with
the highest posterior probability, giving the plots of Figure 6.21 for the two
classes. The figure shows that the model has picked up on a large class of 757
children who have virtually no sensitizations and a smaller class of 296 children
who do have sensitizations. In other words, the two-class model has behaved
as expected and separated out the children who have sensitizations from those
who do not.

310 CHAPTER 6. UNDERSTANDING ASTHMA

Mite Cat Dog Pollen Milk Egg
0

200

400

600

Allergen

Mite Cat Dog Pollen Milk Egg
0

100

200

Age 1 Age 3 Age 5 Age 8

Figure 6.21: Plots for each class showing the number of children with inferred
sensitizations for each allergen/time. The first class contains roughly three-
quarters of the children who have almost no sensitizations. The remaining
children in the second class are those with sensitizations.

6.5.2 Exploring more sensitization classes

The results for two classes provide a useful sanity check that the model is doing
something reasonable. However, we are really interested in what happens when
we have more than two classes, since we hope additional classes would uncover
new patterns of sensitization. Let’s consider running the model with five possible
classes. We say five ‘possible’ classes, because there is no guarantee that all
classes will be used. That is, it is possible to run the inference algorithm and
find that there are classes with no children assigned to them. With our model
and data set, we find that it is common when running with five classes, that
only four of them are actually in use. Effectively the number of classes in
the model defines a maximum on the number of classes found – which allows
for the number of classes itself to be learned. Different random initialisations
give slightly different sensitization classes, but often these contain very similar
looking classes. Figure 6.22 shows some typical results for the four classes found
when up to five were allowed in the model.

6.5. DISCOVERING SENSITIZATION CLASSES 311

Mite Cat Dog Pollen Milk Egg
0

500

Mite Cat Dog Pollen Milk Egg
0

100

200

Mite Cat Dog Pollen Milk Egg
0

50

100

Allergen

Mite Cat Dog Pollen Milk Egg
0

50

Age 1 Age 3 Age 5 Age 8

Figure 6.22: Plots for each of four classes showing the number of children with
inferred sensitizations for each allergen/time. The first class contains roughly
three-quarters of the children who have almost no sensitizations. The remaining
children, with sensitizations, are divided into three classes according to which
sensitizations they have and when they acquired them, as discussed in the text.

As you can see from Figure 6.22, model has divided the children with sen-
sitizations into three separate classes. The largest of these, Class 1, contains
222 children who predominantly have mite and pollen allergies, but have few
other allergies. In contrast, Class 2 contains 112 children who have allergies to
cat and dog as well as mite and pollen. This class also contains those children
who have milk and egg allergies. It is also worth noting that the children in
this class acquire their allergies early in life – in most cases by age 3. The final
class, Class 3 is relatively small and contains 82 children who predominantly
have mite allergies.

These results demonstrate the strength of unsupervised learning – it can
discover patterns in the data that you did not expect in advance. Here we have
uncovered three different patterns of sensitization that we were not previously
aware of. The next question to ask is “how does this new knowledge help our
understanding of asthma?”. To answer this question, we can see if there is any
link between which sensitization class a child belongs to and whether they went
on to develop asthma.

For each child, our data set contains a measurement of whether they had de-
veloped asthma by age 8. For each of the two class and four class models, we can
use these measurements to plot the percentage of children in each sensitization
class that went on to develop asthma. The results are shown in Figure 6.23.

312 CHAPTER 6. UNDERSTANDING ASTHMA

Asthma

10

20

30

40

Class 0

Class 1

(a)

Asthma
0

10

20

30

40

Class 0

Class 1

Class 2

Class 3

(b)

Figure 6.23: Percentage of children in each class who developed asthma by age
8, for (a) the two class model (b) the four class model. In the four class model,
class 2 has a much higher percentage of children with asthma than any other
class, in either model.

Let’s start by looking at plots for the two class model. As we might expect,
the percentage of children with asthma is higher in the class with sensitizations
(class 1), than the class without sensitizations (class 0). Indeed, the presence
of allergic sensitizations is used as a predictor of developing asthma. But when
we look at the results for the four class model, we see a very interesting result –
whilst all the classes with sensitizations show an increased percentage of children
developing asthma, class 2 shows a much higher percentage than any other
class. It seems that children who have the broad set of allergies characterised
by class 2 are more than four times as likely to develop asthma than children
who have other patterns of allergies! This is a very exciting and clinically useful
result. Indeed, when we looked further we found that this pattern of allergies
also led to an increased chance of severe asthma with an associated increased
risk of hospital admission [Simpson et al., 2010]. Being able to detect such
severe asthma early in life, could help prevent such life-threatening episodes
from occurring.

In summary, in this chapter, we have seen how unsupervised learning dis-
covered new patterns of allergic sensitization in our data set. In this case, these
patterns have led to a new understanding of childhood asthma with the potential
of significant clinical impact. Although, in general, unsupervised learning can be
more challenging than supervised learning, the value of the new understanding
that it delivers frequently justifies the extra effort involved.

6.5. DISCOVERING SENSITIZATION CLASSES 313

Review of concepts introduced in this section

discrete distribution A probability distribution over a many-valued random
variable which assigns a probability to each possible value. The parameters of
the distribution are these probabilities, constrained to add up to 1 across all
possible values. This distribution is also known as a categorical distribution.

An example of a discrete distribution is the outcome of rolling a fair dice,
which can be written as Discrete(1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6). The Bernoulli distribution is

actually a special case of a discrete distribution for when there are only two
possible values.

clustering A form of unsupervised learning where data items are automat-
ically collected into a number of groups, which are known as clusters. Each
cluster is then assumed to contain items which are in some way similar.

314 CHAPTER 6. UNDERSTANDING ASTHMA

Bibliography

Bayes, T. (1763). An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price,
in a Letter to John Canton, A. M. F. R. S. Philosophical Transactions,
53:370–418. 36

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
10, 66, 86, 118, 130, 137, 138, 139, 142, 150, 162, 215

Dangauthier, P., Herbrich, R., Minka, T., and Graepel, T. (2007). Trueskill
through time: Revisiting the history of chess. In Platt, J. C., Koller, D.,
Singer, Y., and Roweis, S. T., editors, NIPS. Curran Associates, Inc. 164

Elo, A. E. (1978). The Rating of Chessplayers, Past and Present. Arco Pub.,
New York. 125, 126

Fanta, C. H. (2009). Asthma. New England Journal of Medicine, 360(10):1002–
1014. PMID: 19264689. 267

Frey, B. and MacKay, D. (1998). A revolution: Belief propagation in graphs
with cycles. In In Neural Information Processing Systems, pages 479–485.
MIT Press. 71

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative
filtering to weave an information tapestry. Communications of the ACM,
35:61–70. 237

Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz,
K., and Tenenbaum, J. B. (2008). Church. MIT.
http://projects.csail.mit.edu/church/wiki/Church. 9

Graepel, T., Lauter, K., and Naehrig, M. (2013). Ml confidential: Machine
learning on encrypted data. In Kwon, T., Lee, M.-K., and Kwon, D., editors,
Information Security and Cryptology - ICISC 2012, volume 7839 of Lecture
Notes in Computer Science, pages 1–21. Springer Berlin Heidelberg. 172

Herbrich, R., Graepel, T., and Campbell, C. (2001). Bayes Point Machines.
Journal of Machine Learning Research, 1:245–279. 183

315

316 BIBLIOGRAPHY

Herbrich, R., Minka, T., and Graepel, T. (2007). TrueSkill(TM): A Bayesian
Skill Rating System. In Advances in Neural Information Processing Systems
20, pages 569–576. MIT Press. 125, 141, 153

Junker, B. W. and Sijtsma, K. (2001). Cognitive assessment models with few
assumptions, and connections with nonparametric item response theory. Ap-
plied Psychological Measurement, 25:258–272. 102

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-
lems. Transactions of the American Society for Mechanical Engineering,
Series D, Journal of Basic Engineering, 82:35–45. 163

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American
Statistical Association, 90(430):773–795. 289

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local Computations with Prob-
abilities on Graphical Structures and Their Application to Expert Systems.
Journal of the Royal Statistical Society, Series B, 50(2):157–224. 66, 72

Lazic, N., Roberts, G., Custovic, A., Belgrave, D., Christopher Bishop, J. W.,
Curtin, J., Arshad, S. H., and Simpson, A. (2013). Multiple atopy phenotypes
and their associations with asthma: Similar findings from two birth cohorts.
Allergy, 68, No. 6:764770. 268

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS – a
Bayesian modelling framework. Statistics and Computing, 10:325–337. MRC
Biostatistics Unit. http://www.mrc-bsu.cam.ac.uk/software/bugs. 9

Maybeck, P. S. (1982). Stochastic models, estimation, and control. In Volume
2, volume 141, Part 2 of Mathematics in Science and Engineering, chapter
Chapter 12 Nonlinear estimation, pages 212–271. Elsevier. 148

Minka, T. (2005). Divergence measures and message passing. Technical report,
Microsoft Research. 139

Minka, T. and Winn, J. (2008). Gates: A graphical notation for mixture models.
Technical report, Microsoft Research. 305

Minka, T. and Winn, J. (2009). Gates. In Advances in Neural Information
Processing Systems 21. 295, 301, 305

Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler,
A., and Bronskill, J. (2014). Infer.NET 2.6. Microsoft Research Cambridge.
http://research.microsoft.com/infernet. 9, 73

Moser, J. (2010). The Math behind TrueSkill. 122, 125, 141

Norheim-Hagtun, I. and Meier, P. (2010). Crowdsourcing for Crisis Mapping in
Haiti. Innovations: Technology, Governance, Globalization, 5(4):81–89.

BIBLIOGRAPHY 317

Opper, M. (1998). A Bayesian approach to on-line learning. In Saad, D., editor,
On-line Learning in Neural Networks, chapter A Bayesian Approach to On-
line Learning, pages 363–378. Cambridge University Press, New York, NY,
USA. 148

Outlook team (2008). Internal email study. 167

Patil, D. J. (2012). Data Jujitsu: The Art of Turning Data into Product.
O’Reilly Media. 203

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, San Francisco. 66, 72

Radicati, S. and Hoang, Q. (2010). Microsoft Exchange Server and Outlook
Market Analysis, 2010-2014. Technical report, The Radicati Group, Inc. 167

Ross Anderson, H., Gupta, R., Strachan, D. P., and Limb, E. S. (2007). 50
years of asthma: UK trends from 1955 to 2004. Thorax, 62(1):85–90. 267

Simpson, A., Tan, V., Winn, J., Svensen, M., Bishop, C., Heckerman, D.,
Buchan, I., and Custovic, A. (2010). Beyond atopy: Multiple patterns of
sensitization in relation to asthma in a birth cohort study. American Jour-
nal of Respiratory and Critical Care Medicine, 181:1200–1206. 268, 312

Stan Development Team (2014). Stan: A C++ Library for Probability and
Sampling, Version 2.5.0. 9

Stern, D., Herbrich, R., and Graepel, T. (2009). Matchbox: Large Scale
Bayesian Recommendations. In Proceedings of the 18th International World
Wide Web Conference. 226, 244

Suermondt, H. and Cooper, G. F. (1990). Probabilistic inference in multiply
connected belief networks using loop cutsets. International Journal of Ap-
proximate Reasoning, 4(4):283 – 306. 72

Tufte, E. R. (1986). The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, USA. 80

Zarchan, P. and Musoff, H. (2005). Fundamentals of Kalman Filtering: A
Practical Approach. AIAA, second edition. 163

Zhang, C., Guiver, J., Minka, T., and Zaykov, Y. (2015). Groupbox: A genera-
tive model for group recommendation. Technical report, Microsoft Research.
240

	How can machine learning solve my problem?
	What is model-based machine learning?
	Who is this book for?
	How to read this book

	A Murder Mystery
	Incorporating evidence
	A model of a murder
	Probabilistic models
	Two rules for working with probabilistic models
	Inference using the joint distribution

	Working with larger models
	Inference without computing the joint distribution

	Extending the model
	Incremental inference

	Assessing People's Skills
	A model is a set of assumptions
	Questioning our assumptions

	Testing out the model
	Doing inference by hand
	Doing inference by passing messages on the graph
	Using belief propagation to test out the model

	Loopiness
	Loopy belief propagation
	Applying loopy belief propagation to our model

	Moving to real data
	Visualising the data
	A factor graph for the whole test
	Our first results

	Diagnosing the problem
	Checking the inference algorithm
	Working out what is wrong with the model

	Learning the guess probabilities
	Representing uncertainty in continuous values
	Measuring progress
	A different way of measuring progress
	Finishing up

	Interlude: the machine learning life cycle
	Meeting Your Match
	Modelling the outcome of games
	Inferring the players' skills
	A probabilistic model: TrueSkill
	Inference in the TrueSkill model
	A problem with using exact inference

	A solution: expectation propagation
	Applying expectation propagation
	Multiple games

	Extensions to the core model
	What if a game can end in a draw?
	What if we have more than two players in a game?
	What if the games are played by teams?

	Allowing the skills to vary
	Reproducing the problem
	The final model

	Uncluttering Your Inbox
	Collecting and managing email data
	Learning from confidential data

	A model for classification
	A one-feature classification model

	Modelling multiple features
	Features are part of the model

	Designing a feature set
	Features with many states
	Numeric features
	Features with many, many states
	An initial feature set

	Evaluating and improving the feature set
	Parallel and sequential schedules
	Visualising the learned weights
	Evaluating reply prediction
	Understanding the user's experience
	Improving the feature set

	Learning as emails arrive
	Modelling a community of users
	Solving the cold start problem
	Final testing and changes

	Making Recommendations
	Learning about people and movies
	Characterizing movies
	A model of a trait

	Multiple traits and multiple people
	Learning from many people at once

	Training our recommender
	Getting to know our data
	Training on MovieLens data

	Our first recommendations
	Evaluating our predictions
	How many traits should we use?

	Modelling star ratings
	Results with star ratings

	Another cold start problem
	Adding features to our model
	Results with features
	Final thoughts

	Understanding Asthma
	A model of allergies
	Modelling test results
	Modelling tests through time
	Completing the model
	Reviewing our assumptions

	Trying out the model
	Working with missing data
	Some initial results

	Comparing alternative models
	Comparing the two models using Bayesian model selection

	Modelling with gates
	Using gates for model selection
	Expectation propagation in factor graphs with gates

	Discovering sensitization classes
	Testing the model with two classes
	Exploring more sensitization classes

